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Abstract

A methodology to perform generalized zeroth-order two- and three-dimensional 

shape optimization utilizing a learning classifier system is developed and applied. To this 

end, the applicability of machine learning to mechanical engineering is investigated. 

Specifically, the methodology has the objective of determining the optimal boundary to 

minimize mass while satisfying constraints on stress and geometry.

Even with the enormous advances in shape optimization no method has proven to be 

satisfactory across the broad spectrum of optimization problems facing the modern 

engineer. The methodology developed in this dissertation is based upon a classifier 

system (CS) and exploits the C S’s adaptability and generality. It thereby overcomes 

many o f the limitations o f today’s conventional shape optimization techniques. A CS 

learns rules, postulated as if-then statements, in order to improve its performance in an 

arbitrary environment, (which for this investigation consists o f stress and mass 

information from components). From this input, and from a population o f initially 

randomly generated rules, the classifier system is expected to learn to make the 

appropriate component shape modifications to reach a minimum mass design while 

satisfying all stress constraints. The CS learns by utilizing the design improvement 

success or failure feedback.

Nearly all shape optimization algorithms developed to date depend on sensitivity 

information in order to function. This research does not present sensitivity information to 

the classifier system. Thus, the classifier system must not only learn from a clean slate, 

but confronts the additional challenge of learning without information that most other 

shape optimization algorithms deem essential. Therefore, the main deliverable is a 

zeroth-order shape optimization methodology.

After a review of mechanical engineering shape optimization methods, an 

explanatory presentation of CSs and their underlying genetic algorithm (GA) describes 

how classifier systems learn from feedback and the GA. With this foundation set, the

iv
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coupling of the shape optimization domain with the classifier system proceeds to form, 

the Shape optimization via Hypothesizing Inductive classifier system compleX 

(SPHINcsX). The complex learns shape optimization by its application to a suite of 

sizing optimization problems.

The most tangible artifact o f this research is the successful development of the 

zeroth-order shape optimization complex. The complex proved adept at solving both 

two- and three-dimensional shape optimization problems. The research also provides a 

demonstrative example of the power and flexibility of machine learning in general and 

CSs in particular —  how they may be leveraged as tools for mechanical engineering 

design, and insights into their proper application.
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Chapter

1

Introduction

hape optimization is an emerging part of the mechanical engineering design 

process, and the tools available to assist the mechanical engineer significantly

affect which types of problems are optimized and to what degree. During the past 50 

years there has been a major introduction o f valuable optimization methodologies into the 

field o f mechanical engineering.

Although the volume of recent research may imply that shape optimization is a 

modern science, shape optimization has played a pivotal role since antiquity. Almost all 

design entails optimization, with the demarcation between design and optimization often 

being blurred. The wheel provides a historical illustration between design and shape 

optimization. Historical evidence implies that the wheel was first invented in 

Mesopotamia during the 4 th millennium B.C.E. The design and fabrication o f the wheel 

was a monumental design achievement. However, shortly after 2,000 B.C.E. in northern 

Mesopotamia, central Turkey and northeast Persia, shape optimization improved the 

wheel considerably —  the spoked wheel. How many civilizations may have met their 

demise because they failed to see the importance of shape optimization, facing battle 

against spoked chariots, armed themselves with heavy rolling stock, fashioned with solid 

wheels?

The range of designs and pace at which shape optimization can be applied has been a 

function of the tools available to the designer. Just as the abacus provided a significant 

new tool to designers and others, a myriad of scientific advances including the computer 

today has facilitated the development o f many new shape optimization tools including the 

one developed in this book.

1
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1.1 Objective & Scope
This dissertation has many interrelated objectives. The most general objectives are:

• to develop a scalable+ methodology for component optimization, from simple 
two-dimensional sizing designs to three-dimensional shape designs,

• to investigate machine learning’s applicability as a tool for mechanical 
engineering design.

The particular machine learning technique which will be investigated is the learning 

classifier system. The investigation consists of combining the above two objectives by 

determining if classifier systems can be used for general shape optimization. Some of the 

sub-objectives for the system to be ‘general’ is that the methodology must:

• perform without the benefit of sensitivity information,

•  be independent of the analysis tool,

•  be virtually independent o f the boundary representation.

Therefore the deliverable objective is the development of:

•  a methodology and complex which performs zeroth-order shape optimization 
via a learning classifier system.

Two indirect objectives are: to provide guidelines for interfacing the classifier system 

domain with the mechanical engineering domain, and to convey any serendipities 

discovered during this exploration.

The scope of the research will be limited as follows:

•  optimization will be on isotropic components acted upon by loads, and in 
static equilibrium due to a set of fixtures, or constraints,

• the design modifications will occur by modifying the boundaries of the 
component; no new boundaries such as voids will be introduced,

•  the objective will be to minimize the component’s mass,

•  constraints will be placed on the maximum stress allowed.

’ See A p p en d ix  I). G lossary■ for p recise  de fin ition  o f  sca lab le  w ith regard  to  this research.

2
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1.2 Motivation
Although a plethora o f optimization tools have been developed and enormous 

progress has been accomplished, many, including Haftka and Grandhi [1986], note that 

no one method has proven to be satisfactory across the broad spectrum of optimization 

problems faced by the modern engineer. Various methods, such as dynamic 

programming, guarantee the solution in their realm o f applicability, but computational 

requirements render them useless for large problems. Other methods, such as 

calculus-based gradient search procedures, converge nicely, but are limited to problems 

possessing properties such as continuity and unimodality. Expert systems show promise 

in that they aid engineers’ reasoning via rules, however, the determination o f the 

appropriate rules has proven an arduous and tedious undertaking.

Shape optimization research provides quantifiable benefit to society, for each extra 

kilogram in, for example, a train, plane, or automobile requires extra resources to build, 

extra energy to move, supplementary processing to recycle or additional space to dispose. 

Obviously, motivation exists for further development of efficient optimization methods 

that are applicable over a broad spectrum of design problems. In addition, shape 

optimization provides a pragmatic exercise to test the more general goal of investigating 

machine learning’s applicability as a tool for mechanical engineering design.

1.3 Background & Approach
A myriad o f techniques were explored, as part o f this research, for the salient 

features desired to excel in the realm of mechanical engineering and shape optimization, 

while overcoming limitations inherent to calculus-based methods. The explored 

techniques were drawn from many fields including, mathematics, computer science, 

operations research, and psychology, and may be categorized as:

•  artificial intelligence & machine learning/

' For this research, artificial intelligence subsumes dcduclivc methodologies while machine learning subsumes 
inductive methodologies.

3
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•  enumeration & random,

•  nature analogy,

•  hybrid & other.

All of these techniques have been exploited already in the mechanical engineering 

literature. For example, artificial intelligence in general, and expert systems in particular, 

has seen wide application in design by such researchers as Sriram et al., [1989], Gero 

[1990], Stolfo [1984], Prabhakar [1994], and Takedaet al., [1990]. Applications have 

ranged from the design of large structures (Adeli & Balasubramanyam [1988]), to rapid 

prototyping (Glasgow & Graham [1988]), to the development of an expert system for the 

optimum selection o f filler metals for welds developed by the Colorado School of Mines 

(Jones & Turpin, [1986]). Other areas o f Artificial Intelligence have been applied to 

design, such as Information Processing Theory by Goel and Pirolli [1989]. Nature 

analogy techniques, have received attention, albeit less, by researchers such as Coyne 

[1990] who have employed neural networks in design reasoning.

An overriding issue when performing the literature review for this research was the 

need for flexib ility  and adaptability in the technique chosen in order to perform 

generalized shape optimization. Generalized shape optimization entails covering a wide 

scope o f problems and performing efficient and effective optimization. Because o f 

machine learning’s learning/induction capability, adaptability is an inherent quality; 

hence machine learning deserved further investigation. Before machine learning could be 

considered further, a machine learning technique had to be found that was flexible 

enough to interface naturally to the shape optimization domain. Furthermore, if engineers 

are expected to accept the results, it would be beneficial if they could see and understand 

how the results were obtained, and not have to lay blind trust in a black box.

A machine learning technique which shows great promise and as will be shown has 

excelled is the learning classifier system (further discussed in Chapter 3). It realizes the 

adaptability criterion by, in one respect, being a self-teaching expert system. That is, a 

classifier system learns the rules necessary to operate efficiently in an environment, (in

4
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this study the environment is: shape optimization). Once it has learned, the engineer 

could view it as an expert system with the chain of rules used to perform the optimization 

acting as an explanation facility. Finally, the classifier system is amenable to being 

interfaced to the shape optimization domain.

The approach then is to  take the general shape optimization problem and interface it 

with a relatively simple classifier system. The classifier system can potentially overcome 

many of the limitations of current methods due to its generality, thereby not depending on 

the problem to be optimized possessing certain properties (as is the case in many present 

approaches). The system will take an initial design, calculate the stress properties and 

apply a set o f rules (classifiers) to generate a new design. The rules attempt to match 

patterns of stress that occur on and interior to the modifiable boundaries. This iterative 

process will continue until an optimum design is created. The evolving design’s changes 

in merit will be used as a feedback to the classifier system. Utilizing the feedback and a 

genetic algorithm, good rules will gain strength and breed with other good rules in an 

attempt to evolve better rules.

Many o f the issues that need to be addressed to successfully apply classifier systems 

to shape optimization are determined by judgments made regarding the information flow 

between the design domain and the classifier system. The flexibility of the classifier 

system allows the information flow to be constructed independent o f the design’s 

complexity. This allows for the developments to scale up to larger and more complex 

problems with no change required in the basic procedure. This cannot be said o f most 

other techniques used in shape optimization.

Although classifier systems and their underlying genetic algorithm are not common 

in the mechanical engineering field, genetic algorithms have already proven their worth in 

other real world applications. For example. General Electric has used a proprietary 

genetic algorithm and expert system package called “Engineous” to help design the 

engine for the Boeing 777, and a superconducting generator (Ashley [1992]). Other

5
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applications include designing optimum welds (Deb [1990]), and optimum paths in 

spacecraft rendezvous (Freeman, et al. [1990]).

The application of genetic algorithms directly, (i.e., without a classifier system 

framework), to shape optimization problems has been investigated by others (e.g., 

Dhingra [1990]). The genetic algorithm evolves a solution to one problem but then must 

start from scratch on any new problem. Since genetic algorithms work with a population, 

which in this case consists o f designs, it is obvious that a multitude o f different designs 

would need to be investigated. Even investigators who see this area as fruitful are 

realistic, as Jensen [1992] states euphemistically, “The efficiency o f the genetic algorithm 

approach for structural design is not overly encouraging” , or as Punch et al. [1994] admits 

“the use of genetic algorithms for optimal design of structures requires that hundreds or 

even millions o f possible designs be analyzed”.

As a mathematician with no knowledge o f engineering is likely to perform sub-par to 

an engineer in the application of mathematics to engineering problems, one needs 

engineering acumen to successfully apply and interface classifier systems to engineering 

shape improvement or any other engineering problem. This point does not always express 

itself in the reading, but is abundantly clear when one attempts the application of 

classifier systems to the engineering realm, as in this research.

1.4 Deliverables & Benefits
This research will provide a myriad o f benefits to the mechanical engineer, many of 

the benefits will have tangible incarnations in the form o f software systems. A major 

benefit of this research is the development of a shape optimization methodology capable 

of:

•  determining global optimal shapes,

•  exhibiting stable performance,

•  handling two and three dimensional problems,

•  performing without the assistance of sensitivity information,

6

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

• rivaling the efficiency o f state-of-the-art in shape optimization techniques,

• independence from the analysis technique used to determine stresses.

The instantiation of the methodology contributes the major deliverable, the Shape 

optimization via Hypothesizing Inductive classifier system compleX (SPHINcsX, 

pronounced s f i n k s ) .  The complex is a software package that performs zeroth-order 

shape optimization by exploiting an inductive classifier system for stress constrained 

problems.

The shape optimization methodology and its implementation demonstrate the benefit 

o f machine learning as a tool for mechanical engineering design. More specifically this 

research benefits mechanical engineering by demonstrating:

•  machine learning has its role in the mechanical engineer’s tool box,

• an example of how to realize the tool’s capabilities,

•  guidelines for machine learning’s application in general, and classifier systems 
in particular.

Another beneficial artifact is the:

•  Learned population of classifiers.

Simply stated, a learned classifier system may be applied as an expert system. The 

learned population o f classifiers is synonymous to the knowledge base in an expert 

system; and could be used directly in SPH INcsX or as the knowledge base in another 

expert system.

1.5 Outline of Dissertation
Chapter 2 provides a formal review of computer aided shape optimization. This 

includes the definition of shape optimization and its mathematical representation. 

Different classes o f shape optimization will be reviewed and clarification of this work’s 

scope will be laid out. Criteria necessary to perform shape optimization will be 

discussed, as well as the evaluation of the optimization’s performance. The current state- 

of-the-art will be presented with associated achievements, performance and limitations.

7
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Chapter 3 provides a pedagogical treatment o f learning classifier systems. This 

chapter is more in-depth because the expected audience o f this work is more engineering 

oriented and familiarity is not presumed in the machine learning domain. Ample 

references are provided to the interested reader to learn more about topics discussed 

throughout this dissertation. The classifier is described by breaking it down into its major 

components. Particular attention is paid to the genetic algorithm which provides much o f 

the learning power to the classifier system. Once the mechanism of the classifier system 

has been discussed and portrayed graphically, the metrics used to measure its 

performance are introduced with empirical predictions for the expected time needed for 

learning.

Chapter 4  describes the integration o f shape optimization with classifier systems.

The information important enough to be presented to the classifier system is determined. 

This information is then presented to the classifier system in a form which is meaningful. 

From the classifier system, an effect is caused. The interplay between the output interface 

and the shape modification is described. The feedback mechanism is developed so that 

from the changes made to the design, appropriate information may be presented to the 

classifier system in order for it to learn.

C h a p ters  details the complete algorithm developed in this study and completes the 

definition o f the Shape optimization via Hypothesizing Inductive classifier system 

compleX (SPHINcsX). The chapter sets the classifier system parameters described in 

Chapter 3, and includes the algorithm for initializing the classifier population. The final 

major portion o f the chapter establishes the learning suite of problems used to mentor 

SPHINcsX.

Chapter 6 details the mentoring process used to teach SPHINcsX. The mentoring 

process consists o f applying the learning suite established in Chapter 5 to SPHINcsX in 

learning mode. The chapter monitors the learning performance, ascertaining the criteria 

for deeming the complex learned.
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Chapter 7 demonstrates and evaluates the performance of SPHINcsX. The chapter 

covers the differences between learning mode and application mode. In application 

mode, SPHINcsX acts much like an expert system. Next, SPHINcsX in application 

mode, is applied to a set o f designs, all of which have never been seen before. The 

performance is evaluated and compared to other available techniques, and results.

Chapter 8  summarizes and draws conclusions from this research. An overview is 

presented and major new knowledge derived from this study is summarized. Then certain 

unexpected serendipities that arose during the research are described. Some minor 

limitations and ways in which they could be overcome are covered next. Finally, future 

directions are suggested and final conclusions are presented.'

Appendices  provide the complete initial classifier population, the learned population, 

a detailed version of the algorithms used by SPHINcsX, and a glossary.
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Chapter

2

Shape Optimization — 
Background & Setting the Stage

Formal research into the optimization of structures has been attempted since 

antiquity; evidence of structural optimization in the modern era was first 

documented in the 17th century by Galileo in his Treatise, where the optimum shape o f 

beams was investigated. The following sections will formally define shape optimization 

and review the state of the art.

2.1 Definitions
There have been many definitions advanced for optimization theory and shape 

optimization. A concise definition for optimization theory is given by Beightler et al.

[1979] as:

Optimization theory encompasses the quantitative study o f  optima and  
methods fo r  finding them.

Another definition presented by Pike [1986] states:

The objective [o f optimization theory] is to select the best possible 
decision fo r  a given set o f  circumstances without having to enumerate all 
the possibilities.

Much o f the literature uses a definition similar to the following for shape optimization:

The determination of the boundary form which best meets the design 
criteria while simultaneously satisfying all design constraints. Shape 
optimization is generally associated with structural optimization where the 
objective is to minimize mass with constraints imposed on stress, 
displacement, buckling and/or natural frequency.

Observe from these definitions that optimization theory has two main thrusts:

10

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

1. Determination o f the optimum.

2 . Methodologies for improvement leading to the optimum.

This, and most other works, deal with developing methodologies for improvement 

leading to an optimum. This is why the deliverable o f this research is not a set of case 

studies which have been optimized but a technique and complex (as defined in Chapter 5) 

which can perform optimization on certain classes of problems.

The mathematical form of the shape optimization problem consists of the objective 

functionw hose  minimum value is sought, and constraints limiting the range over which 

the objective function may be minimized. The objective function and the constraints are 

functions of the design variables, where the design variables consist o f those entities 

which may be modified.

The constraints have two classifications: explicit and implicit. Explicit constraints 

can be expressed as a function o f the design variables, while implicit constraints can not 

be expressed explicitly in terms of the design variables.

The mathematical form of the optimization problem is:

minimize: f (x )

subject to: gc(x ) < 0

g,(x) < 0 (2 . 1)

where,

f(x )
g,(x)
gi(x)

X Vector (xi, X2, ..., X|) o f I design variables.
Objective function.
Vector ( g} (x ), g 2(x ) ......  g ” (x ) ) of m explicit constraints.

Vector ( g. (x ) , g,: (x ) ,...,  g " (x ) ) of n implicit constraints.

11
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2.2 Shape Optimization Classes
There are three distinct classes o f  shape optimization problems. In order of 

computational complexity, these are: size, shape, and topological optimization 

(Sandgren, et al. [1991]).

•  Size optimization (also called cross-sectional optimization) refers to the 
determination of specific geometric dimensions for a pre-selected design class, 
such as the thickness o f a shell, the size of a truss member or the radius of a 
circular stress element. This class o f  problems has been under modern 
investigation for decades (Schmidt [I960]).

•  Shape optimization (also called geometric optimization) introduces additional 
design variables which allow for boundary movement. Due to its increased 
difficulty relative to size optimization, the geometrical changes have 
historically been limited; however, it has gained importance in the aircraft and 
automotive industries, as well as others, providing improvements to turbines, 
airfoil shapes and connecting arms (Ali [1994]). Size optimization is a subset 
o f shape optimization.

•  Topological optimization involves topological as well as shape and size 
modifications. Topological modifications deal with assemblies of 
components. The components in the assembly may be modified and 
components may be added, deleted or moved in the assembly in the attempt to 
generate an improved design. Relatively little work has been done in this area 
(Suzuki & Kikuchi [1991], Gage [1994], Reddy & Cagan [1994]), despite the 
importance of the concept.

The current investigation considers shape optimization. Although interest in and 

investigation of shape optimization research has been intensifying during the last few 

decades, as Sangren et al., [1991] emphasizes, “there is much work to be done before this 

class of optimization can become an integral part o f the design process” .

2.3 Criteria for Shape Optimization
The minimum criteria necessary for any optimization process are:

•  evaluate objective,

•  check constraints.

12
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Though some optimization methods can operate utilizing only these facts, most 

methods developed to date cannot operate with the minimum criteria. Most need 

auxiliary information such as:

•  derivatives (i.e., sensitivities), 

and properties such as:

• continuity of objective function,

• closed form representation of objective function,

• unimodality of the objective function.

The derivatives required consist o f  the derivative of the objective function and the 

derivatives of the constraints with respect to the design variables. These derivatives are 

termed sensitivities. The process of determining the sensitivities is termed sensitivity 

analysis. For many problems this auxiliary information is unavailable or expensive to 

determine. Modem optimization algorithms have become so dependent on auxiliary 

information that many see some auxiliary information as being part of the minimum 

criteria. Haftka and Grandhi [1986] epitomize this sentiment:

Design sensitivity analysis, that is the calculation o f quantitative 
information on how the response o f  a structure is affected by changes in 
the variables that define its shape, is a fundamental requirement fo r  shape 
optimization.

This study investigates a technique which can operate with only the minimum  

criteria. In so doing, it not only surpasses enumeration and random search but competes 

favorably or exceeds techniques which exploit auxiliary information. Furthermore, the 

technique studied is flexible enough to be able to exploit auxiliary information to further 

increase its efficiency. Further background on other optimization methods is provided in 

Section 2.4.4.

2.4 Process of Shape Optimization
Figure 2.1 provides a simplified view of the shape optimization process. In Figure 

2.1 the Start block represents an initial condition that must be set by human intervention

13
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before any automated optimization may proceed. The initial condition starts with a 

(normally feasible) design, h  feasib le design is one where none of the constraints are 

violated.

Start

Final Design

Optimization Module
Boundary Representation 

Module

Termination ModuleAnalysis Module

Optim ization 
Loop

Figure 2.1 Shape Optimization Process Overview

Figure 2.1 shows that there are four major modules in the shape optimization 

process:

•  Boundary Representation,

•  Analysis,

•  Optimization,

•  Termination.

The design needs to be built with at least one degree of freedom, usually more.

These degrees of freedom are the design variables; the design variable vector may be as 

simple as a radius for a rod, or as complex as consisting o f many sets o f control points 

which define surface patches o f complex surfaces. Therefore, a boundary representation 

must be defined as part of the design’s initial condition. Figure 2.2 provides a more 

detailed view o f the shape optimization process, (note that X in the figure is a vector of

14
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design variables). The boundary representation module and the design variables are 

further discussed in Section 2.4.1.

Start

Boundary
Representation
Module

Optimization
Module

Initial V a lu es* .

Next Design 
P o in t**

Analysis
Module

No

Termination
Module

Yes

Stop

Optimization
Algorithm

Termination Criteria 
Satisfied?

A n aly sis  M odel

Select a Boundary 
Representation

Define Design 
Variables X

Analysis Technique

Design Model

Modify Design 
Variables

Figure 2.2 Optimization Process Major Modules

After the boundary representation module defines the geometric representation of the 

design, the analysis module converts the model to an analysis model if the present 

geometric representation cannot be used directly. The analysis is performed so that the 

objective function and the implicit constraints may be evaluated. If any auxiliary 

information is needed by the optimization module, the analysis module must provide this 

also. This is further discussed in Section 2.4.2.

From the analysis module, the termination module checks to see if any o f the 

termination criteria are met. From here the system branches, stopping if the termination 

module determines the termination branch should be taken, otherwise the branch is made

15
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to the optimization module. The termination module is further discussed in Section 2.4.3 

and Chapter 4.

The optimization module determines which design variables to modify and by how 

much. The optimization module then changes the design variables. These new design 

variables are subsequently passed to the boundary representation module, completing the 

loop; this loop is termed an optimization iteration. The optimization module is further 

discussed in Section 2.4.4 and is the main thrust of this dissertation.

2.4.1 Boundary Representation & Design Variables
The optimal shape depends on the boundary representation and design variables 

selected to represent the modifiable boundaries, which define the design space. For 

example, the optimum shape o f the cantilever beam shown in Figure 2.3 is dependent on 

the boundary representation and the number o f design variables.

t
i

Constant Variable

Constant

Figure 2.3 Simple Cantilever Beam

Constant

t
Control
points

Variable Variable

p T

Figure 2.4 Cantilever Beam with Spline Boundary Representation
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If the cantilever beam was modeled as shown in Figure 2.3 with only one design 

variable which is the height o f the free end, then the optimum would be different than the 

model shown in Figure 2.4, where the modifiable boundary is represented as a series of 

cubic splines with four control points defining the curve.

Many research efforts have explored the relation o f boundary representation to shape 

optimization (e.g., Widmann [1994]). Advances in Computer-Aided Engineering (CAE) 

have seen the decoupling of the analysis model from the boundary representation. Earlier 

studies set the design variables to the node locations in the finite element model, 

encountering many limitations (e.g., Fleury & Braibant [1983]), including distorted 

elements resulting in invalid analysis results.

Although the acceptance of the importance of decoupling the boundary 

representation from the analysis model is universal, a consensus on the best boundary 

representation has not been forthcoming. Many representations have been investigated, a 

non-exhaustive list is shown in Table 2.1.

Table 2.1 Boundary Representations

Boundary Representation As used by, e.g.
polynomials Botkin [1982]
trigonometric functions Yang & Fitzhom [ 1992]
splines Braibant & Fleury [1984]
linear curvature element Widmann [ 1994]
intrinsic functions of arc length, and curvature Hsu [1992]

This study’s scope attempts to treat the boundary representation module as a black 

box; but since the optimization module must interface with the boundary representation 

module it must be cognizant of the representation used. To this end, an optimization 

module will be developed that is capable of working with many different boundary 

representations, however, with the singular restriction that the design variables (control 

points) are actually on the design boundary. This restriction still allows for most 

boundary representations including:

•  lines, arcs, circles, ellipses,

17
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•  cubic splines (where the design variables are the points through which the 
cubic splines pass),

•  surface patches.

The intention is to permit the designer the flexibility to construct the initial design with 

boundary representations appropriate for the situation, from which the optimization 

module will use the boundary representations as additional constraints.

2.4.2 Analysis Module
The analysis module’s purpose is to determine the values o f the:

•  objective function,

•  implicit constraints,

•  auxiliary information (needed by the optimization module).

For a certain category of components these values may be calculated directly via first 

principles, (e.g., beam theory, elasticity, shell and plate theory). For more complex 

components, the finite element (FE) method (Zienkiewicz [1980]) provides a generally 

applicable technique. The boundary element method (Zhao [1991]) is another generally 

applicable method receiving increasing attention, but has yet to evolve into a commercial 

contender to the FE method.

Because of the difficulty o f interfacing an analysis module and an optimization 

module, many optimization techniques have been coupled to the analysis module. This is 

the reason for the historical use of FE nodes as design variables. It is much easier to 

implement a system that utilizes the same representation for the geometric representation 

and the analysis representation. In the case o f finite element analysis, advances such as, 

automatic mesh generation, adaptive mesh refinement, error estimates, and geometry- 

based constraints, have permitted the, albeit difficult, decoupling of the optimization 

module from the analysis module. Most modem commercial finite-element analysis 

packages, such as SDRC’s I-DEAS™, Ansys Inc.’s ANSYS™, and Rasna’s 

Mechanica™, provide most if not all of these advances. Although the implementation of 

the conversion from the geometrical representation to the analysis model and the interface

18
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between the analysis module and the optimization module may be non-trivial, as is the 

case in this study; this work will focus on the advancements made in optimization theory 

which occur in the optimization module.

The analysis module utilized here is envisioned as a black box which will provide 

the minimum criteria to the optimization module. Therefore, the optimization module 

will be designed not to be dependent on the technique used by the analysis module. To 

this end, two types of analysis modules will be used in this research, one will derive its 

results from closed form solutions while the other will utilize the finite element method.

2.4.3 Termination Module
The termination module checks criteria to determine if the optimization process 

should be terminated. Three categories classify most termination criteria: optimum, 

progress, and resource. Optimum  termination criteria check if the design is optimal and if 

so, stops. Progress termination criteria check if improvement over one or many iterations 

falls below a threshold, stopping if so. Resource termination criteria stop if a resource 

limitation, such as computing resources, has been exceeded. The termination module 

terminates the optimization process as soon as any, o f the termination criteria, is satisfied.

Optimum termination criteria provide the preferred method of ending the 

optimization process because the final design’s degree of optimization is known. 

Unfortunately, for many design categories an optimum termination criterion is not 

forthcoming, therefore another termination criterion terminates the optimization process. 

An example of where an optimum termination criterion can be active is for designs where 

the optimum occurs when the modifiable boundaries are fully stressed in the optimized 

configuration. Designs which meet this condition include two-dimensional designs with 

no internal boundaries (e.g., holes) where the objective is to minimize mass [Hsu, 1992], 

The optimization stops when the stresses on all the modifiable boundaries converge to 

within an allowable deviation, e, from the fully stressed condition. The allowable 

deviation, e. is a user specified unitless parameter. Many studies use a value of 0.05 or

19
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less; which means the stresses must converge to within 5% or less of the fully stressed 

state. Note that e is zero for the optimal condition.

Progress termination criteria use lack o f improvement over one or many iterations as 

the determining factor for stopping. For methods that guarantee, or have a high 

probability, of creating monotonically improving designs, or methods where a design 

change to a worse design is grounds for stopping, the optimization process is terminated 

when improvement between iterations drops below a threshold, £imp. The improvement 

threshold, £ jm p, is a user specified parameter. For optimization methodologies that search 

the design space in a manner that allows for new designs which may be worse than the 

previous design, termination occurs when improvement during the past /i,mp iterations 

drops below £imp. The number of past iterations, n,mp, to consider is normally a user 

specified parameter.

Resource termination criteria stop the optimization process when a resource 

limitation has been exceeded. Examples o f resource based termination criteria are:

•  maximum allowable number of optimization iterations,

•  maximum allowable wall-clock time,

•  maximum allowable expenditure o f computing resources.

2.4.4 Optimization Module
The optimization module’s purpose is to make modifications to the design which 

result in an optimal or improved design. This is accomplished by interfacing with the 

analysis module to acquire information necessary to proceed through the optimization 

module. As discussed above, this requires at least the minimum criteria and usually 

additional auxiliary information.

With all the necessary information at its disposal, the optimization module 

determines the design variable(s) to modify, and the magnitude o f the modification(s).

The optimization module then effects these decisions, modifying the design variables.

20
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These new design variables are passed to the boundary representation module where the 

dimensions are changed and the geometric representation is updated.

A multitude of optimization algorithms may be used in the optimization module. For 

the purpose of review they are categorized as follows:

•  calculus-based,

• artificial intelligence & machine learning,

•  enumerative & random,

• nature analogy,

• hybrid & other.

Calculus-based methods have been studied the most. There are two main classes 

(Pike [1986]): indirect methods, and direct methods. Indirect methods seek local extrema 

by solving the usually, nonlinear set o f equations resulting from setting the gradient o f the 

objective function equal to zero. This is the generalization of the elementary calculus 

notion of extremal points. Direct methods seek local optima by beginning somewhere on 

the objective function and moving in a direction related to the local function gradient.

This is the concept o f hill-climbing. Calculus methods are local in scope, require the 

existence of derivatives and usually continuity and unimodality (of, for example the 

objective function). Such limitations destroy the technique’s utility in many real world 

optimization scenarios.

These limitations are in no way meant to denigrate the robustness and utility of 

calculus-based methods. These powerful tools have solved (e.g., Zienkiewicz &

Campbell [1973]) and continue to solve complex and important problems (e.g., Widmann 

[1994]). Most commercial FE software packages which include an optimization module 

utilize calculus-based methods. The point is to recognize when this tool is appropriate, 

and when it is n o t/

T It is easy to view all p roblem s as “calcu lus n a ils"  w hen  the only tool at o n e 's  d isposal is a  “calcu lus h am m er" .
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Artificial intelligence and machine learning methods provide techniques for software 

to partially learn and reason. As discussed in Chapter 1, some of the promise of these 

techniques have born fruit in mechanical engineering, while others from this category 

such as fuzzy logic (Zadeh [1985]), hypothetical reasoning (Harris [1989]), model-based 

reasoning (Fulton & Pepe [1990]) need further exploration to determine their utility.

With regard to shape optimization, there is nothing inherent that prevents these 

techniques from succeeding in the shape optimization domain. The classifier system is a 

machine learning method which utilizes a genetic algorithm, a nature analogy method, in 

its learning process.

Both enumerative and random  techniques are not restricted to specific problem 

domains like the calculus methods are. Their major weakness is the same —  inefficiency. 

In addition, an enumeration o f all possibilities directly violates Pike’s definition of 

optimization theory which states, “without having to enumerate all the possibilities”.

Even though guided random search can be orders o f magnitude more efficient than 

enumeration, many search spaces are simply too large to be attacked by these techniques 

in less than geological time frames.

Nature analogy methods are those which are derived by analogy from some natural 

phenomenon. These natural phenomena range from the annealing of metals (Kirkpatrick, 

et al. [1983]) to neural networks (Rumelhart et al. [1986]), to the evolution of species. 

Some of these methods have been touched upon in Chapter 1; recall that the genetic 

algorithm utilized by the classifier system is based on a nature analogy. While this study 

provides the initial classifier system application to mechanical and structural 

optimization, (raw) genetic algorithms have been applied by Goldberg [1986], Jensen 

[1992], and others.

There are many other optimization methods which do not fall completely into the 

above categories (e.g., Hsu [ 1992]), or are a hybrid o f  techniques, such as using artificial 

intelligence in conjunction with other approaches (e.g., Ashley [1992]).
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2.5 Performance Metrics
To quantify the performance of a shape optimization methods the following factors 

must be considered:

• scope,

•  efficiency,

• effectiveness.

Scope entails the spectrum o f shape optimization classes which can be handled (by a 

particular method), such as sizing and shape optimization problems only. Efficiency 

describes the rate at which improvement occurs relative to the termination point. 

Effectiveness measures the level o f optimization of the best design found. Efficiency and 

effectiveness are compared graphically in Figure 2.5, Curve A is more efficient than 

Curve B although they are equally effective after X  iterations. O f course, for any number 

of iterations less than X  the effectiveness of Curve A would be superior to the 

effectiveness o f Curve B.

Optimum
A _ _

B

X iterations

Iterations
Figure 2.5 Optimization Efficiency & Effectiveness

Therefore the optimization system developed in this research will be compared with 

other techniques by comparing the scope of this system with other systems. Then the 

primary performance metric will be the efficiency of this research’s optimization system 

in determining the optimum of benchmark problems, which will be compared directly
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against the best performances found in the literature. The effectiveness metric will also 

be compared to the results found in the literature.

Recall that most other techniques (see Section 2.3) benefit from:

• sensitivity information,

• hard coding of the implementor’s algorithm.

While the system developed in this dissertation:

•  has no sensitivities supplied to it,

•  must learn to perform optimization.

Table 2.2 compares the scope and efficiency of the optimization method categories 

described in Section 2.4.4. The asterisks reveal where this research fulfills the potential 

of machine learning as a tool for shape optimization.

Table 2.2 Scope and Efficiency Ranges o f  Optimization Method Categories

Size Efficient
Shape (2D) Scope Y
Shape(2D) Efficient N* N N M

Shape (3D):
Shape (3D) Efficient N N* N N N
Topological
Topological Efficient N N N N N

* This research converts these to Y

Performance of State of the Art
When evaluating the computational costs of most modern optimization systems, the

analysis module dominates the expenditure of resources. It is thus considered the base 

cost and used as a measure of efficiency. This can be extended to comparisons of 

sensitivity and non-sensitivity based optimization; for example if the determination of the 

sensitivity information adds an extra 40% to the resources expended in the analysis 

module then one simply multiplies the iterations required by the sensitivity based
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optimization system by 1.4 to get the equivalent analyses in the non-sensitivity based 

system.

Few optimization systems cover the intended scope of this study, and those that do 

suffer debilitating limitations as the following attests. One example is genetic algorithm 

based systems; Goldberg and Samtani [1986] developed a system to optimize ten-member 

plane trusses while Jensen [1992] developed a system that can improve a broad range of 

geometries, both functioned without the benefit o f sensitivity information. The drawback 

o f both developments is inefficiency. The examples solved required thousands o f 

analyses.

Modern optimization systems with a more restricted scope, which usually depend on 

sensitivity information, perform orders o f  magnitude better. However, most of these 

systems require the initial design to be no more than two times (100%) heavier than the 

optimum, or rephrased: the optimum will require a 50% reduction in mass or less. In the 

cases presented by Kothawala et al. [1988] concerning the optimization of an engine 

piston and an aircraft wing, the optima were 30% and 33% lighter than the original 

design, respectively. Vanderplaats and Blakely [1989] also assume that, “the initial 

design is a reasonable one, in which the objective function, mass, is to be reduced by 

about 20%”.

With the above restrictions, many systems have been able to perform optimizations 

on simple shapes with a few design variables in less than 20 equivalent analyses.

Braibant [1986] applied sensitivity based optimization to simple 2-dimensional shapes, 

completing the optimization in about ten equivalent analyses, with reductions in mass 

greater than 50%. Vanderplaats and Blakely [1989] processed examples with optima 

usually achieved at a cost o f under 15 equivalent analyses. Belegundu [1993] 

investigated the optimization of a torque arm. His system found an optimum shape in 17 

equivalent analyses with a 40% reduction in weight. Hsu [1992] performed shape 

optimization on components, including a torque arm, reducing the mass 38% in less than 

10 equivalent analyses without any auxiliary information.
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2.6 Summary
This chapter provided a formal review o f shape optimization. This included 

definitions of shape optimization and its mathematical representation. Different classes 

of shape optimization were reviewed and clarification relevant to this work was 

presented. The chapter discussed criteria necessary to perform shape optimization, as 

well as the evaluation of the optimization’s performance. The chapter closed with a 

review of the achievements, performance, and limitations of state-of-the-art shape 

optimization techniques.
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Chapter

3

Background — Classifier Systems & Genetic 
Algorithms

Soon after the advent of the electronic computer, scientists envisioned its potential to 

exhibit learning behavior. Since the early machine learning work by Samuel 

[1959], many machine learning systems have been developed. One of these, the learning 

classifier system, introduced by Holland and Reitman [1978] is a machine learning 

system which possesses the salient properties needed to learn in the shape optimization 

domain.

Though a complete review of machine learning field is beyond the scope o f  this 

work, two important concepts need to be formalized. In machine learning, the machine is 

a software system running on a computer, while learning is analogous to (some subset of) 

the human learning behavior. Furthermore, behavior is a product o f the interaction 

between an agent and its environment, where the agent is any entity, (biological, 

mechanical or otherwise), that can perform actions, intelligent or not. The universe of 

possible behavioral patterns is therefore determined by the structure and the dynamics of 

both the agent and the environment, and in particular by the interface between the two 

(the sensors and the effectors).

Machine learning distinguishes between two important classifications for behavior; 

one is stimulus-response and the other is dynamic. Stimulus-response (S-R) behavior is 

reflex behavior; that is, a stimulus to the agent (via its sensors) causes a direct response 

by the agent (via its effectors). Dynamic behavior, is more complex with there being an 

internal state which may perform multiple layers of computation before a response is 

generated.
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Learning has many denotations and connotations; the following two descriptions 

summarize learning for the purpose o f this study:

• An agent (machine learning system) learns (with respect to an environment) if 
its production o f a response alters the state o f the environment in such a way 
that future responses o f the same type tend to be better.

• Systems that are capable o f making changes to themselves over time with the 
goal of improving their performance on the tasks confronting them in a 
particular environment [demonstrate learning]. (Kondratoff & Michalski 
[1990]).

The rest o f this chapter introduces a simple Michigan Approach Classifier System  

(CS), as first described by Holland and Reitman [1978]. The major components o f the 

classifier system are detailed; one of these components includes the genetic algorithm  

(GA). Since the genetic algorithm plays such a vital role in the classifier system’s 

learning ability, the significant aspects o f  the genetic algorithm are presented. With the 

classifier system ’s components introduced, the holistic viewpoint is next presented 

demonstrating the interplay o f the newly described components. With the CS and GA 

developed, relevant past applications are reviewed. The chapter closes with methods 

used to evaluate the learning performance of classifier systems. For a more in-depth 

overview o f genetic algorithms and classifier systems the interested reader is directed to 

Goldberg [1989], and the seminal work by Holland [1975]. Much o f the subsequent 

review is based on these works.

3.1 Introducing the Classifier System
A classifier system (CS) is a machine learning system that learns syntactically simple 

string rules, called classifiers, as introduced by Holland and Reitman [1978]. These 

classifiers guide the system’s performance in an arbitrary environment. A classifier 

system derives its name from its ability to  learn to classify messages from the 

environment into general sets and is similar to a control system in many respects. As a 

control system1 uses feedback to “control” or “adapt” its output for an environment, a

* Dorl 11983] provides an introduction to control systems.
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classifier system uses feedback to “teach” or “adapt” its classifiers for an environment. 

Since most environments are not guaranteed to be static and learning can never be known 

to be complete, the learning process may never cease.

The classifier system has developed out o f the merging of expert systems (as 

described in, Charniak and McDermott [1985]; Waterman [1986]), and genetic 

algorithms as originated by Holland [1975]. This synthesis has overcome the main 

drawback to expert systems; namely, the long task of discovering and inputting rules. 

Using a genetic algorithm, the CS learns the rules needed to perform in an environment, 

(in this current study the environment is structural shape optimization).

The development of expert systems has helped advance many fields by having 

computers reason more like humans. Expert systems allow the computer to use rules. 

Some rules are concrete facts while others are rules-of-thumb (heuristics) that work in 

most situations, but the specific rules are still unknown for all situations.

As mentioned above, an obstacle to the wider use of expert systems is the fact that all 

rules for the expert system must be provided by humans, and therefore have to be 

collected from literature and interviews. Furthermore, since the rule set is static, the 

system can never discover if a rule-of-thumb is non-applicable, and should consequently 

be eliminated or modified. Another conflict occurs when more than one rule may be 

applicable to a situation; all such conflicts must be foreseen or the system may halt, not 

knowing how to proceed.

The learning capability o f the CS greatly enhances the realization of the expert 

system’s promise. With the classifier system, one may input rules (as with an expert 

system) or start from random rules, or, as is likely to be done in most real world 

scenarios, input as many rules as possible and let the classifier system learn new ones and 

try to improve the entered rules.

A classifier system is much more than a simple expert system that can learn from 

experience (which in itself is an immense boon). As the rest of this chapter will attest, a
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classifier system is a general machine learning system applicable to diverse environments, 

able to learn with incomplete information and classify the environment into hierarchies.

The science o f classifier systems is young, however there are two approaches which 

have developed, the Michigan Approach and the Pitt Approach (DeJong [1988]). This 

study employs the Michigan approach because it is the classical approach, having proven 

itself and undergone more development. This current study also does not posses any of 

the characteristics where the Pitt approach may prove superior. The following describes 

the foundation o f a Michigan Approach classifier system*. A classifier system has three 

major components:

• Rule and message sub-system,

•  Apportionment of credit sub-system,

• Classifier discovery mechanisms (primarily the genetic algorithm).

Figure 3.1 shows the interactions between the classifier system and the environment. 

The classifier system receives information about the environment, performs internal 

processing and then effects the environment. It then uses feedback about the effect on the 

environment to learn from the experience. This arrangement has the classifier system in 

learning mode, because the classifier system is utilizing the feedback to learn from 

experience. Conversely, if no feedback is provided, the classifier system is in application 

mode. Application mode is utilized after sufficient learning is accomplished. The 

subsequent discussion up until Section 3.4 deals with the classifier system exclusively in 

learning mode.

Further reference to classifier system  will mean a Michigan approach classifier system
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Environment

Input from 
Environment J r Effect

Environment P Feedback

Classifier System

Figure 3.1 Interactions between Classifier System and Environment

Figure 3.2 provides more detail on the classifier system’s internal components. In Figure 

3.2 the detectors, effectors, and classifier population blocks are part o f the rule and 

message sub-system; the auction and reward/punishment blocks are part of the 

apportionment o f credit sub-system; and the classifier discovery block is part o f the 

classifier discovery mechanisms. The following three sub-sections describe the 

components in more detail as well as the information flow between the components.

Input from  
Environment

Effect
E nvironm ent

F eed b ack

D etectors Effectors
R ew ard/

Punishm ent

Environment

At essage Spa re

Classifier System

Figure 3.2 Classifier System Modules & Interaction with Environment

3.1.1 Rule and Message Sub-system
Each classifier consists of a rule or conditional statement whose constituents are 

words drawn from the ternary alphabet (0,1,#). It has one or more words or conditions as
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the antecedent, an action statement as the consequent, and an associated strength. The 

rule portion has the template:

IF <conditioni>&<condition2>&...&<conditionN> THEN <action> (3.1)

where,

<condition> is encoded as a string from the alphabet {0, 1, #}

<action> is encoded as a string from the alphabet (0, 1}.

The “#” symbol acts as a wild card or “don’t care” in the condition, matching either a 0 or

1. This allows for more general rules. The more “don’t care” symbols the more general 

the rule. The measure used to quantify this is called: specificity. The specificity of a 

classifier is the number of non #  symbols in the antecedent. If a classifier’s antecedent 

consists of all #  characters then the specificity is zero, if there are no #  characters in the 

antecedent then the specificity is equal to the antecedent’s string length.

The strength portion o f the classifier gives a measure of the rule’s past performance 

in the environment in which it is learning. That is, the higher a classifier’s strength the 

better it has performed and the more likely it will actually be used when the condition 

matches an environmental message (see Section 3.1.2.1) and to reproduce when the GA is 

applied (see Section 3.2). The strength values are relative; therefore, a range limit is set.

If a strength falls out o f this range, the strength value can be set to the closest range 

extreme to eliminate the range violation.

The messages, generated either from the environment (or from the action of other 

classifiers), match the condition part of the classifier rule. Therefore, an action is a type 

of message, with the consequence of an action being the modification of the environment 

(or the attempted matching with another classifiers in some classifier systems). In this 

study, classifiers only match messages from the environment and actions generated from 

classifiers only modify the environment. This restriction makes the classifier system a 

stimulus-response (S-R) system.
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For a condition to match a message, every part of the condition string must match 

every part of the message string. Therefore the message,

011001
would match all o f  the following conditions

0110#1
011001
# # 1 0 0 #
# # # # # #  

as well as others.

To illustrate, Table 3.1 shows samples o f strings which are valid forms for 

classifiers, (with the symbol denoting the break between the antecedent and action, i.e. 

<antecedent>:<action>), in the first column, and their associated strength in the second 

column.

Table 3.1 Samples o f  Valid Classifiers

Rule Strength
011:101 23.2

011001##10#110:11 17 .3
10101000110011##100#:11100001 32.9

#### : 1 7.1
100##00100##0011##:011001 29.0

The alphabet is restricted to allow for the power o f genetic algorithms to be applied 

to the rule set as described below in Section 3.2, Genetic Algorithm. The alphabet in no 

way restricts the representational capacity of the classifiers.

The form of a rule differs from those normally found in expert systems. In expert 

systems, the rules often consist o f sentences, for example,

IF there is a stress concentration at a sharp corner,
THEN round the corner.

Such syntax makes it very difficult for a computer system to be able to modify such a

rule. Just as text is stored on computer disks as 0 ’s and 1 ’s, any rule can be translated
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into 0 ’s, l ’s, and # ’s, so that it is in the form of a classifier. Once translated, rules can be 

manipulated more easily, and rule discovery and modification can occur.

The messages from the environment, which match the antecedent of the classifiers, 

are filtered and converted via input sensors. The sensors (called detectors in classifier 

system parlance) discriminantiy select certain aspects of the environment to sense and 

then translate the input to a binary form which can be processed by the classifiers.

The actions of the classifiers modify the environment via the effectors (or output 

interface) see Figure 3.2. The effectors translate the binary action into a form which is 

appropriate to modify the environment within an envelope of allowable modifications.

3.1.2 Apportionment of Credit Sub-system
The apportionment of credit sub-system deals with the modifications in strength of 

classifiers as the classifier system learns (Booker, et al. [1989]). Strength modifications 

occur via three interrelated mechanisms:

• Auction,

• Reinforcement & punishment,

• Taxation.

As the classifier system receives messages from the environment, all the classifiers 

which match one (or more) o f the messages compete, by submitting a bid , in an auction 

to determine a victorious classifier that will effect the environment. Section 3.1.2.1 

further discusses the auction. The victorious classifier's modification will be beneficial 

or detrimental to the environment. With this feedback, the apportionment of credit sub­

system appropriately uses reinforcement & punishment to increase or decrease the 

strength of the victorious classifier that caused the modifications. Section 3.1.2.2 details 

how feedback from the environment is used with reinforcement and punishment. Finally, 

taxation is levied on each classifier per iteration and on each classifier that submits a bid 

during an auction. Details of and the need for taxation are provided in Section 3.1.2.3.
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Computer simulations show that the exact mechanism for the apportionment of 

credit sub-system is not critical to the learning ability of the CS (e.g., Riolo, [1988]).

That is, the apportionment of credit sub-system may have many forms and the CS will 

still learn, albeit incrementally more efficiently with the apportionment o f credit sub­

system in some forms than others. This is an example of one o f the many CS parameters 

which needs to be set. The values to which the parameters should be set cover a range, 

guided by biological analogy and empirical results. Many times the parameters are 

manipulated during the learning process to determine if such manipulations can enhance 

learning.

3.1.2.1 Auction: Bidding & Competition

An auction is performed among all the classifiers which have an antecedent that

matches at least one of the environmental messages. The classifier system’s detectors 

receive input from the environment and assemble the input into environmental messages 

(see Chapter 4, Section 4.3). Each classifier attempts to match each environmental 

message, with each classifier that matches bidding in the auction. Figure 3.3 displays a 

simplified view of how the auction functions.

With the matching classifier pool determined, the auction commences. Each 

classifier participating in the auction submits a bid, the bid is a function of the classifier’s 

strength and specificity. Only the bid of the victorious classifier is paid, so only the 

victorious classifier has its strength decreased by the amount of its winning bid. The bid 

of classifier i at iteration t, Bj(t), is calculated as:

Bj(t )  = *()*(*, + k 2 * BidRatioBRPow) * Sj{t) (3.2)

where,

ku

k, 

k.2
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acts as an overall risk factor influencing what proportion of a 
classifier’s strength will be bid and possibly lost on a single step. 
Bid Coefficient 1: constant less than unity for non-specificity 
portion of bid.
Bid Coefficient 2: constant less than unity for specificity portion
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of bid.
Si(t) Strength o f classifier i at step t.
BidRatio Measure o f the classifier’s normalized specificity. A BidRatio  o f

1 means there is just one possible message that matches each 
condition, while a BidRatio  of zero means the classifier would 
be matched by any message and the antecedent would consist of 
all wildcard characters.

BRPow  Parameter controlling the importance of the BidRatio  in
determining a classifier’s bid (default is 1).

Detectors sense information from environment

Population of Classifiers

0 1 0 1 0 0 1 0 1 0 1 0 : 0 1 0 1
01# 10# 101010:1101

0 1 # 1 0 # 1 0 1 0 1 # : 0 1 1 1
0 1 0 # # 0 1 0 # 0 1 0 : 0 1 0 1

auction

Victorious Classifier

Victorious classifier executes consequent

Match environmental messages with 
antecedents o f classifers

Convert to binary: assemble into 
environmental messages

Classifiers that match an environmental 
message go to the auction

Consequent sent to effectors, 
effectors modify environment

Figure 3.3 Auction in Classifier System
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To promote exploration o f the classifier space, the bids submitted by each competing 

classifier in Equation 3.2 are not used directly to determine the auction winner, random 

noise is added to the auction. Therefore the effective bid, e B j(t), is calculated as the sum 

o f the deterministic bid, B,(t), and a noise term, N(Obid) as shown in Equation 3.3:

eBi (t) = Bi (t) + N ( a bid).  (3.3)

3.1.2.2 Reinforcement & Punishment
Since the pioneering work on machine learning by Samuel [1959], the credit

assignment problem (Minsky [1963]) has been known to be a key problem for any 

learning system in which many interacting parts determine the system’s global 

performance. Credit assignment deals with the problem of deciding, when many parts of 

a system are active over a period of time (or even at every time step), which o f those parts 

active at some step t contribute to achieving some desired outcome at step t+n, for n > 0. 

This is a particularly challenging problem.

To solve the credit assignment problem in classifier systems, the bucket brigade 

algorithm, as defined by Holland [1986], was developed, and has experienced limited 

success to date. An alternative and simpler solution (when possible) is the 

implementation of the CS as a stimulus-response (S-R) system —  this solution has 

proven successful as Table 3.5 in Section 3.5 exhibits. A S-R classifier system activates 

only one classifier each iteration and the activated classifier effects the environment. 

Therefore the environmental modification can easily be attributed to a single source.

A trainer is necessary to determine whether the environmental modification was 

beneficial or detrimental. Some machine learning systems require a tutor trainer which 

knows the correct or best answer, enabling the system’s actual response to be compared 

with the correct response. Fortunately, a classifier system requires only the more flexible 

reinforcement trainer. Reinforcement learning requires only positive or negative 

feedback from the reinforcement trainer as a consequence of a response.
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When the victorious classifier creates a beneficial effect to the environment, the 

trainer sends positive feedback causing an increase in the victorious classifier’s strength. 

Conversely, a detrimental effect leads to punishment. Since the victorious classifier’s 

strength decreases when it wins the auction and pays its bid, (as shown in Equation 3.2), 

punishment occurs implicitly anytime a reward is not provided. In addition, an adjunct 

strength reduction may occur. If the trainer has the ability to rank environmental effects, 

then the rewards and punishments can be scaled appropriately.

The strength S,(t+ 1) o f a classifier i  at the end of iteration t  is:

Si (t + \) = Si (t) + Ri ( t ) - B , ( t ) ,  (3.4)

where,

Si(t) Strength of classifier i at beginning of iteration t.
R i(t> Reward from the environment during iteration t.
BJt)  Classifier’s bid during iteration t  (as defined by Equation 3.2)

only paid if victorious.

Again, classifier / only makes a bid payment if victorious in the auction and effects 

the environment. The reward factor, Rift), is only non-zero if the classifier won the 

auction on the previous iteration. The reward (or punishment) for the action at iteration t 

will not be applied until iteration t +1.  Note that R,(t) is less that zero for punishment, 

and greater than zero for reward.

3.1.2.3 Taxes

Taxation occurs to prevent the classifier population from being cluttered with 

artificially high strength classifiers of little or no utility. There are two types of taxes:

•  life tax,

•  bid tax.

The life tax, Taxy,, (also called head tax) is a fixed rate tax applied to every classifier on 

every iteration. The purpose is to reduce the strength of classifiers that rarely or never are 

matched and therefore provide little or no utility. Non-producing classifier’s strengths arc 

slowly decreased, making them candidates for replacement when the classifier discovery
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mechanisms (primarily the genetic algorithm) creates new classifiers. The bid tax , Taxbui, 

is a fixed-rate tax that is applied to each classifier that bids during an iteration. One 

reason for a bid tax is to penalize overly general classifiers, i.e., classifiers that bid on 

every step but perhaps seldom win because they have a low specificity which leads to low

bids and so a low chance of winning the auction to post effector messages (Riolo [1988]).

The free-fall half life determines the order of magnitude of the life tax, and is 

determined by observing that the strengths of inactive (non-matching) classifiers are only 

reduced by the life tax. Therefore after n  iterations o f inactivity the strength o f an 

inactive classifier has the strength:

S( t  +  n) =  S ( t ) * ( l - T a x lifer -  ( 3 .5 )

The half l ife ,n, o f an inactive classifier may then be determined by Equation 3.6, 

lo g (l/2 )
n = ------ ^ -------— . (3.6)

log(l -  TaxUf' )

If the half-life is specified, the tax rate may be found by Equation 3.7,

Ta xi,fr = l - ( l / 2 ) ,,/n>. (3.7)

As will be discussed in Section 3.1.3, new classifiers are inserted into the population 

at the average strength o f their parents, thus the tax rate must be set to ensure that inactive 

rules are degraded sufficiently before the application of the genetic algorithm. If this is 

not done, relatively inactive rules can retain an unrealistically high level of strength and 

ultimately reach reproduction disproportionately, thereby cluttering future populations 

with large numbers of overrated inactive rules. However, the tax burden can not be so 

great that rules which have only remained inactive by chance become so weak that they 

are essentially eliminated from any auction. Thus the life tax should be set to yield a half 

life on the order o f the application period of the genetic algorithm.

With all the apportionment of credit mechanisms defined, the complete strength 

equation is shown in Equation 3.8:
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S, (? +  1) = (1 -  TaxUJt )5, (?) + R, (?) -  B, (?) -  Taxm  * B, ( ? ) . (3.8)

Recall that,

R i(t)  will only be non-zero if  classifier i won the auction on
iteration t-1.

Bj(t) is only paid if classifier i wins the auction.
Taxhid * B, (?) is only paid if classifier i bids in the auction (irrespective of

whether classifier i wins the auction or not).

3.1.3 Classifier Discovery Mechanisms
Two classifier discovery mechanisms are implemented in the system utilized in this 

study:

•  Genetic algorithm,

• Triggered cover detector operator.

The foremost operator, the genetic algorithm  (GA), provides the bulk o f the 

discovery and learning capability found in a classifier system. Discussion o f the GA is 

deferred to Section 3.2 and its sub-sections to provide the coverage due.

The triggered cover detector operator (TCDO) is a triggered rule generation 

mechanism, i.e., a rule generation operator that is only activated (i.e., triggered) when 

certain conditions occur. In fact, it is triggered whenever the classifier system does not 

have a classifier which matches (i.e. covers) any environmental message. It responds by 

producing one new classifier that would be satisfied by an environmental message at step 

t with a condition that matches the unmatched environmental message. The action part is 

just randomly generated on the {0,1) alphabet.

The TCDO is a special case o f a mutation operator (described in Section 3.2) which 

implements a random walk through the space of possible classifiers. A random walk 

performs pathetically in the astronomical search space of possible classifiers; however, in 

conjunction with a GA, a TCDO improves learning relative to the GA being applied 

alone (Robertson & Riolo [1988]).
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Two considerations must be accounted for when determining the initial strength 

given to a new classifier created by either the TCDO or the GA:

1. The strength should not be too low, otherwise the new classifier will never win an 
auction and therefore never get a chance to prove itself better (or worse) than 
existing classifiers.

2 . The strength should not be too high, otherwise the new classifiers will be tried too 
often, overruling existing rules that perform well, and may lead to unstable 
performance.

Computer simulation studies by Riolo [1988] and others conclude that rules introduced 

by the TCDO should have the average of the strengths of the classifiers in the population; 

while the offspring o f the GA should have the average strength o f the parents.

3.2 Genetic Algorithm
Thomas Malthus’ Essay on the Principles o f  Populations in 1798 is one o f the 

earliest known works dealing with the modeling o f biological adaptation. However, not 

until 1865, when Gregor Johann Mendel, an Augustinian monk in a Brnof monastery 

studied the inheritance characteristics of peas, was the catalyst o f modem genetics set 

forth. Unfortunately, this work languished in obscurity until 1900, when it was 

rediscovered by H. de Vries, C. Correns and E. Teschermak (Doolitle [1986]). Thus, 

virtually all inheritance and genetic research has occurred in the 20th century.

Most complex organisms evolve by means of two primary processes: natural 

selection and sexual reproduction. The first determines which members o f a population 

survive to reproduce, and the second ensures mixing and recombination among the genes 

o f their offspring.

A genetic algorithm (GA) is a stochastic search algorithm based on the mechanics of 

natural selection (Darwin [1897]) and population genetics (Mettler, et al. [1988]).

Genetic algorithms are patterned after natural genetic operators that enable biological 

populations to effectively and robustly adapt to their environment and to changes in their

* Located in the present day Czech Republic.
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environment. Some of the correspondences between biological genetics and genetic 

algorithms are shown in Table 3.2.

Table 3.2 Biological and Artificial Vernacular Correspondence

Biological
Term

Corresponding Genetic Algorithm Term

chromosome classifier or string
gene character or bit
allele bit value
locus position

Genetic algorithms, as Goldberg [1989] states and demonstrates, are theoretically 

and empirically proven to provide robust search in complex spaces. The GA performs its 

search balancing the need to retain population diversity ‘exploration’, so that potentially 

important information is not lost, with the need to focus on fit portions o f the population, 

‘exploitation’ (Whitley [1989]). Reproduction in GA theory, as in biology, is defined as 

the process o f producing offspring (Melloni et al. [1979]). However, mating may occur 

between any two classifiers/ as there is no male-female distinction.

Improvements come from trying new, risky things. Because many o f the risks fail, 

exploration involves a period o f performance degradation. Deciding to what degree the 

present should be mortgaged for the future is a classic problem for all systems that adapt 

and learn. The genetic algorithm’s approach to this obstacle is crossover (as discussed 

below).

In computational terms, genetic algorithms are distinguished from other search 

methods by the following features:

•  A population o f structured  that can be interpreted as candidate solutions to 
the given problem.

•  The competitive selection of structures for reproduction, based on each 
structure’s fitness as a solution to the given problem.

* Genetic algorithms can work on other structures besides classifiers, hut the review will use classifiers for consistency 
with the study.

: The structures in this study are the rule portion o f the classifiers.

42

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

• Idealized genetic operators that recombine the selected structures to create 
new structures for further testing.

The following discusses the operators of a basic genetic algorithm. A mathematical

justification for the G A ’s power is provided through the schema theorem (Holland

[1975]). The schema theorem has developed from earlier work by Holland [1968] and is

under continuing development. For more information on the schema theorem the

interested reader is directed to, in addition to the references already cited, Bethke [1981],

Fitzpatrick and Grefenstette [1988]. Koza [1992], and Whitley [1994] provide both

theoretical foundations, as well as lucid descriptions of schema and schema theory.

Genetic Algorithm Operators
The basic genetic algorithm operators involved in reproduction are:

• Selection,

• Crossover,

• Mutation.

The placement o f these operators in the overall genetic algorithm is shown in Figure 3.4.

Initialize Parameters

1) Selection of Parents

Generate initial population

Evaluate population statistics

2) Crossover

Generate Offspring and apply 3) mutation

Update population

Determine strengths for all population members 
(execute many classifier learning iterations)

Figure 3.4 Simple Genetic Algorithm Flowchart
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In Figure 3.4 there is a box that reads, ‘Determine strength for all population members’, 

in the case of a classifier system this determination can not occur during a single iteration. 

Classifier systems determine the ranking among the population members via multiple 

interactions with the environment whereby strength changes occur via the apportionment 

of credit sub-system of the classifier system. Only after multiple interactions with the 

environment will the classifier strengths represent a measure o f how well the classifier 

performs in the environment. The number of iterations that occur between each 

application of the genetic algorithm is called an epoch. Therefore in Figure 3.4 each loop 

represents one epoch.

1) Selection deals with the selection of classifiers of the population which will 

reproduce. The selection algorithm allocates reproductive trials to classifiers as a 

function o f their strength. Some selection strategies are deterministic such as elitism  

where just a certain percentage of the strongest classifiers are selected. However, most 

research has shown that stochastic selection biased by strength is more productive.

For stochastic selection, the selection probability is proportional to the individual’s 

strength. During selection, high strength classifiers have a greater probability of 

producing offspring for the next generation than lower strength classifiers. There are 

many different ways to implement the stochastic selection operator, with most methods 

which bias selection towards high strength proving successful as Goldberg and Samtani 

[1986] as well as others have shown.

Fitness proportionate reproduction is a simple rule whereby the probability of 

reproduction during a given generation is proportional to the fitness of the individual. In 

this investigation, the probability that a classifier, i, will be selected for mating is given 

simply by the classifier’s strength divided by the total strength o f all the classifiers:

F> = n r-  ■
k = l

44

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

where,

P, Probability of selection for classifier /.
Si Strength of the classifier i.
n Total number of classifiers.

This gives every member of the population a finite probability o f becoming a parent, with

stronger classifiers having a better chance.

2 ) Crossover takes a portion of each parent (as described below) and combines the 

two portions to create offspring. After selection, the strings are copied into a mating pool 

and crossover occurs on the copies.

First, panmictict pairs o f parents are chosen from the copies in the mating pool. That 

is, the mate for each individual which was chosen during selection is randomly bred with 

one o f the other classifiers which was chosen during selection. Techniques have been 

suggested which bias the mate to have certain characteristics but none o f these techniques 

were employed in the current work.

Second, each pair o f copies undergoes crossing over as follows: an integer position k 

along the string is selected uniformly at random on the interval (7, L-l), where L  is the 

length of the string. Two new strings (classifiers) are created by swapping all characters 

between positions L  and k  inclusively.

To visualize how this works, consider two strings A and B o f length 7 mated at 

random from the mating pool:

A = a l  a2 a3 a4 a5 a6 a7
B = b l  b2 b3 b4 bS b6  b7.

Consider the random selection of k is four. The resulting crossover yields two new 

classifiers A '  and B '  following the partial exchange.

A' = b l  b2 b3 b4 a5 a6  a7
B' = a l  a2 a3 a4 bS b6  b7.

'  R andom , see p a n m ix ia  in A ppend ix  I), G lossary• for p recise  defin ition .
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The simple crossover described above is a special case o f the n-point crossover 

operator. In the n-point crossover operator, more than one crossover point is selected and 

several substrings from each parent are exchanged. This study employs solely the 

single-point crossover operator.

Although the mechanics o f the selection and crossover operators are simple, the 

biased selection and the structured, though stochastic, information exchange o f crossover 

give genetic algorithms much o f their power.

3) Mutation, the random alteration of a string position, performs a secondary role in 

the reproduction process. Mutation is needed to guard against premature convergence, 

and to guarantee that any location in the search space may be reached. In the classifier’s 

tertiary code, a mutation could change,

0 t o  a  1  o r  # ;
1  t o  a  0 o r  # ;

o r  #  t o  a  0 o r  1.

By itself, mutation is a random walk through the classifier space. The frequency of 

mutation, by biological analogy and empirical studies, is on the order of one mutation per 

ten thousand position transfers.

3.3 Replacement & Crowding
Replacement and Crowding handles the introduction of new classifiers into a 

population and the elimination of classifiers from a population. The classic 

implementations of classifier systems and genetic algorithms have constant size 

populations. Therefore for each new individual created, another individual must be 

eliminated.

An important dynamic of GAs and CSs is the population percentage replaced on 

each generation. Generational replacement genetic algorithm (GRGA) replaces the 

entire population with each generation; this is the traditional approach of straight genetic 

algorithms. Steady state genetic algorithm  (SSGA) replaces only a small portion of the
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population on each generation. Classifier systems normally use the SSGA approach.

This study will not deviate from the norm and uses a SSGA.

With a SSGA approach, the question of which classifiers to replace arises. The 

senescence of a classifier plays no factor in replacement; a classifier may be eliminated 

after only one generation or potentially be immortal. While it is logical to replace low 

strength classifiers, simple replacement of the worst can be improved upon. A crowding 

mechanism among a low strength sub-population is implemented. The technique is 

modeled on that by De Jong [1975].

The technique is employed for each new classifier generated for insertion into the 

population. A crowding factor  o f  checks are made to determine which classifier to 

replace. Each check consists of randomly selecting a crowding sub-population from the 

entire population, then selecting the lowest strength classifier in the sub-population. The 

selected classifier is added to a pool of replacement candidates. When the crowding 

factor checks are complete, the pool members are compared to the child and the child 

replaces the most similar candidate on the basis of similarity count. Similarity count is a 

simple count of the positions where both the child and candidate are identical. This 

method is beneficial in that it helps maintain diversity within the population.

After completing the above, each of the offspring is checked to see if it is a twin to 

any of the other members of the population. This may occur even with the above 

procedure because the twins may be both offspring. If a twin is found, a mutation is 

introduced into the lower strength twin, the process is repeated, if necessary, until the 

individual is unique. A twin provides no benefits and is detrimental because it decreases 

population diversity.

3.4 Classifier Systems: The Holistic Viewpoint
Now that the components of the classifier system have been introduced, a holistic 

view may be more fully appreciated. When the classifier system is not learning, it 

receives information from the environment via the detectors, determines the appropriate
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classifier to fire, then performs the action prescribed by the fired classifier via the 

effectors. This arrangement is called application mode , and is shown in Figure 3.5.

Environment

/
i

f

i

Input from /  
Environment

_  Effect 
' Environment

1
Classifier System

Figure 3.5 Classifier System and Environment Interactions: Application Mode

When learning is occurring, some form o f an initial population must be created. As 

stated, one may commence with many possible initial populations. To fully test the 

learning ability of the CS a tabula rasa is used. Even if  a randomly generated initial 

population is selected, many population parameters still must be set. These include the 

number of conditions in the antecedent, the word length for each condition and the action 

and the probability of selecting a #  in the randomly generated population. These issues 

will be further discussed and actual selections made for this study in the next chapter.

The basic interactions between an environment and a classifier system in learning 

mode as first shown in Figure 3.1, is repeated in Figure 3.6.

Feedback
Effect
Environment

Input from 
Environment

Environment

Classifier System

Figure 3.6 Classifier System and Environment Interactions: Learning Mode
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Since the initial classifiers are randomly generated, they are most likely of low 

quality and should be considered nothing more than guesses. The classifier system 

performs many iterations o f interaction with the environment receiving feedback allowing 

the guesses to be ranked. These iterations consist of the classifier system’s major cycle; a 

flowchart of the major cycle is shown in Figure 3.7. The major cycle shown in Figure 3.7 

extends the information provided in Figure 3.3, in Section 3.1.2.1. The earlier figure did 

not include the feedback used by the apportionment of credit sub-system to reward or 

punish the responsible classifier.

Perform auction amongst all classifiers which matched

Generate effector message by activating victorious classifier.

Effectors modify environment

Send feedback to the apportionment of credit sub-system to pay reward 
or apply punishment

1) Compare environmental messages to the antecedent of all classifiers 
2) Record all matches

1) Detectors sense information from environment 
2) Convert to binary: assemble into environmental messages

Figure 3.7 Classifier System Major Cycle

After an epoch (of iterations) the genetic algorithm is applied mating the best 

guesses. As the iterations and epochs increase the quality of the guesses increases. Since 

general guesses (i.e., classifier with many #  symbols) participate in auctions more than 

specific guesses, the initial learning will find some general guesses which are correct 

more times than not. With the concept of major cycle and epoch defined, the genetic 

algorithm flowchart shown in Figure 3.4 in Section 3.2 can be specialized for the 

classifier system, as shown in Figure 3.8.
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Initialize Classifier System

Perform Crowding & Replacement

Crossover

Generate offspring and apply mutation

Generate initial tabula rasa population

Selection of Parents

Evaluate population statistics

Perform an epoch of iterations of the classifier 
system’s major cycle (Figure 3.7)

Figure 3.8 Genetic Algorithm in Classifier System

With some learning behind it, the population of classifiers may be thought of as a 

population of hypotheses (Holland [1992]). As always, a hypothesis (classifier) enters the 

auction when it is pertinent to the situation. A hypothesis’ competitiveness is determined 

by its past performance and its specificity. For the victorious hypothesis, its destiny is 

tied to the result of its actions. As epochs pass, successful hypotheses will exchange 

information via the genetic algorithm. These offspring will replace disproved hypotheses 

with more plausible but untested hypotheses.

Figure 3.9 shows more details of the classifier system’s structure, adding detail to 

Figure 3.1 from Section 3.1.
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Input from 
Environment

Effect
Environment

Feedback

Classifier System

Environmental
M essages
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: Original S trength  ►

•^--iS treng th  C hange  :■

[Oiicl: each cpi\:h ut iterations

Rule Discovery Mechanism

Auction

EffectorsDetectors

Matched
Classifiers

Victorious
Classifier’s

Action

Genetic Algorithm

Apportionment of Credit 
Sub-System

Match environmental 
messages with 

antecedents o f classifiers

Environment

Population

Classifiers

Figure 3.9 The Classifier System & Interaction with Environment: Learning Mode

With more epochs comes the evolution o f more specific hypotheses which control 

behavior in their narrow domains, overriding the more general default rules. This 

development of general (or default) hypotheses and specific (or exception) hypotheses 

allows the classifier system to learn gracefully, permitting the handling of novel situations 

by general hypotheses while providing for exception hypotheses when necessary. This 

hierarchy of classifiers is known as default hierarchies and will be further explored in 

Section 3.4.1.
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As epochs continue and most o f the feedback becomes positive, the classifiers may 

be thought of as more and more validated hypotheses. Furthermore, when the classifier 

system can pass criteria to be considered learned, the classifiers may be considered 

heuristics and rules.

Figure 3.10 shows the detailed interactions of the major components o f the classifier 

system and a detailed view o f the rule and message sub-system.

Environment

Input from 
Environment

Trainer —

Effect
Environment

Feedback

Detectors Effectors

1
env-messt

env-mesa

Environmental
M essages

Match environmental 
messages with 

antecedents o f  classifiers

Victorious
Classifier’s

Action

Classifier System 

Rule Discovery Mechanism
t q, tv *; . JT.J,

Auction

Matched
Classifiers

New
Classifier

Bids

j :
Population 

of
Classifiers

i — r
{Oncj^ac^poch^ntcration^J

: Original S trength  

^Strength C hange

S,(t+I) = ( 1-Tax, ,fc)S,(t) + 
R,(t) - Bj(i) - TaxbiJ* B,(t)

Apportionment of Credit Sub-system

Selection New
of Parents classifiers

Genetic Algorithm

Rule Discovery Mechanism

Figure 3.10 Detailed Classifier System & Interaction with Environment: Learning Mode
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3.4.1 Default Hierarchies
A default hierarchy is a multi-level structure in which classifiers become more 

general as the top level is ascended. Each general rule responds to a broad set of 

environmental messages, so that just a few rules can cover all possible states o f the 

environment. Since a general rule may respond in the same way to many inputs that do 

not really belong in the same category, it will often err. To correct the mistakes made by 

the general classifiers, lower level, exception rules evolve in the default hierarchy. The 

lower level classifiers are more specific than the higher level rules; each exception rule 

responds to a subset of the situations covered by the more general rule, but it also makes 

fewer mistakes than the default rules made on those states.

Default hierarchies have several features that make them well suited for learning 

systems that must build models of very complex domains, they:

•  Can be made as error-free as necessary, by adding classifiers to cover 
exceptions to the top level rules, to cover exceptions to the exceptions, and so 
on, until the required degree of accuracy is achieved.

• Make it possible for the system to learn gracefully, since adding rules to cover 
exceptions will not cause the system’s performance to change drastically, even 
when the new rules are incorrect.

• Allow a minuscule population, (as compared to the search space of all 
possible classifiers), to evolve a population which collectively covers the 
overall problem space.

Because the antecedent of classifiers can be more or less general (by having more or 

fewer wildcard #  symbols), default hierarchies are defined implicitly by many sets of 

classifiers. For example, consider the following simple single-condition classifiers of 

length I =3:

1##: Action i
10#:Action2
lOl.Actioni.

These classifiers define a simple three-level default hierarchy, in which the first classifier 

is the most general, covering four messages, the second is an exception to the first,
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covering two of those four messages, and the third is an exception to both, covering just 

one message.

3.4.2 Other Mechanisms
The above has described the workings o f a simple classifier system and basic genetic 

algorithm. The discussion also added relevant background to modifications to the 

rudiments which are used by this study. A variety o f other additions and variations to the 

classifier system have been suggested in the literature. Many of these were investigated 

but were either found to be ineffectual or found not to be appropriate for this study.

Table 3.3 shows a sampling.

Table 3.3 Classifier System Extensions

Extension Name References
Implicit Niching Horn, et al. [1994]
Coverage-base Genetic Induction Greene & Smith [1994]
Fuzzy Classifier Systems Valenzuela-Rendon [1991] 

Parodi & Bonelli [1993]
Using Performance-Based Action Selection Wilson [1994]
Island model genetic algorithm (IMGA) Whitley [1993]

3.5 Applications of Classifier Systems &
Genetic Algorithms

Despite classifier systems and genetic algorithms’ youth, GAs, and CSs to a lesser 

extent, have seen rapid growth in their application. Genetic Algorithms have found near 

optimal solutions in a variety of environments (Goldberg [1989]). Table 3.4 presents 

some GA engineering applications.
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Table 3.4 Engineering Applications o f Genetic Algorithms

Description Reference
Optimal structures using genetic algorithm include work by 
Dhingra and Jensen

Dhingra [1990] 
Jensen [1992]

The flow vectoring of supersonic exhaust nozzles using a genetic 
algorithm to define optimally shaped contours was investigated by 
King

King [1991]

Callahan investigated the use of Genetic Algorithms for the 
strength-to-weight and stiffness-to-weight optimization of 
Laminates

Callahan [1991]

The application of GA to the designing optimum welds has been 
investigated by Deb

Deb [1990]

Baffes and Wang have investigated the use of GA in the path 
planning of a mobile transporter

Baffes and Wang [1988]

General Electric’s Engineous helped design the engine for the 
Boeing 777

Ashley [1992]

VLSI cell placement Kling [1991]
Design of Air-Injected Hydrocyclone Karr and Goldberg 

[199U]
Composite material structures’ design and optimization Punch et al. [1994]
Composite laminate staking sequence optimization for buckling 
load maximization

Le Riche and Haftka 
[1993]

Table 3.5 presents some o f the more successful classifier system applications. These 

examples are stimulus-response (S-R) systems, searching the space o f possible stimulus- 

response rules. Except for allocating payoffs directly to the classifiers that produced 

results, the bucket brigade algorithm as defined by Holland [1986] did not play a role in 

these systems.

Table 3.5 Applications o f  Classifier System

Description Reference
Dorigo has developed a robot path planning system utilizing many classifier 
systems simultaneously.

Dorigo and 
Sirtori [1991]

Utilized a classifier system to control a simulated creature in a simple two- 
dimensional environment.

Booker [1982]

Demonstrated the application o f a classifier system to the control of gas flow 
through a national pipeline system.

Goldberg
[1983]

Applied classifier systems to learning dynamic planning problems, such as 
determining plans of movement through artificial environments in search of 
food.

Roberts
[1993]

Used classifier systems to leam to categorize Boolean multiplexer functions. Wilson [1986]
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3.6 Performance Analysis
Classifier system performance divides into two modes,

• Learning mode performance,

• Application mode performance.

The learning mode performance measures how well the classifier system is learning 

to perform the correct behavior in an environment. The application mode performance 

measures the performance of the learned classifier system in handling problems from the 

same domain (but different problems) from which it was taught.

Application mode performance is addressed in Chapter 7, where the application 

mode performance is measured and compared to the performance o f other techniques 

which solve problems in (a subset of) the environment which the learned classifier can 

perform.

Pure random search provides a lower bound on the learning mode performance of 

genetic algorithms and classifier systems; of course, substantial increases in performance 

over random search must ensue before suggesting that the classifier system is learning.

The evidence for learning is an increase in the classifier system ’s performance. 

Therefore, to know that the classifier system is learning the target behavior, various 

performance metrics are employed.

The simplest measure of learning performance is the ratio o f the number of correct 

responses to the total number of responses produced:

^  Number o f  correct responses 
Total number o f  responses

P I  will always be less than or equal to 7, and is defined as the cumulative measure, 

and gives an idea of the whole learning process. A local measure portrays the present 

performance level, and is defined as follows:
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P2 =
Number o f  correct responses during epoch

(3.12)
Epoch length

A  different type of metric relates to multi-step goals. For example, if the classifier 

system’s actions are each only a single step towards a larger goal, then the number of 

steps to attain the goal is an important metric. The shape optimization environment is a 

situation where a classifier system cannot be expected to find the optimal shape in a 

single design iteration. Thus for multi-step goals the performance metric P3 is defined 

as:

All these metrics should show an asymptotic improvement with increasing learning 

iterations, and thus reveal not only the learning progress but also a point where the 

diminishing returns are so small that continued learning is not justified. At such a point 

the learning regime must be deemed to have reached, a learned state, or a point of failure.

Another set o f metrics tries to explain some of the internal workings of the classifier 

system. One is a histogram o f the strength distribution for the classifier population. In 

this chart the classifier strengths are grouped into sets with the following ranges;

The number o f classifiers in each set is plotted as a vertical bar, and the horizontal axis 

shows the strength from 0 to 20. Initially the histogram will show just one bar with a 

height equal to the population size because all classifiers are initialized with the same 

value. Figure 3.11 displays a hypothetical strength histogram.

P3 = Number of iterations to attain goal. (3.13)

0-1, 1-3, 3-5, 5-7, 7-9, 9-11,11-13, 13-15, 15-17, 17-19, 19-20.
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Figure 3.11 Strength Histogram Illustration

The other metric in this set depicts the default hierarchies in the population. The 

specificity of a classifier is equivalent to its level in the default hierarchies. Figure 3.12 

displays a default hierarchy chart of a population of 1000 classifiers. The classifier 

strengths in this illustration range from 0 to 20, and there are 60 levels o f specificity. The 

strengths can be any real number between 0 and 20 inclusive, while a classifier’s 

specificity can have only a certain number of fixed values. In this illustration there are 61 

such values, a level 0 specificity in Figure 3.12 represents having an antecedent 

consisting o f all #  symbols, and a level 60 specificity has no #  symbols in the antecedent. 

The overall chart reveals the level o f specificity diversity in the population, while the 

region with strengths greater than the population mean represents the default hierarchies 

of the best classifiers.
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Figure 3.12 Example Default Hierarchy Snapshot at Learning Iteration t

A different set of metrics deals with taking a closer look at the multiple step goal 

attainment performance (see P3 above) of the classifier system at various stages of 

learning. For these metrics, a property describing the state of the environment is charted 

versus the iterations needed to solve a multi-iteration goal. Figure 3.13 provides an 

example, showing a chart with two properties that describe the state o f a system which 

requires multiple steps to reach a desired goal. In this example, the system may be 

thought of as already having Y  learning iterations behind it when this new goal is 

presented to the classifier system. The iterations in Figure 3.13 represent those required 

to accomplish the goal. This illustration took 55 iterations for the goal to be satisfied, 

since learning continues with this problem, these 55 iterations occur on the learning 

iterations Y+l through F+55. These metrics measure the efficiency and effectiveness as 

described in Chapter 2, Section 2.5 at different stages o f learning.
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Figure 3.13 Example Multi-iteration Goal Plot from  Learning Iteration Y to Y+55

Learning Times
The main drawback for the classifier system is the computational resources needed 

for the system to learn. The results of this study demonstrate that these computational 

needs are not restrictive for shape optimization. Furthermore, the CS benefits greatly 

from where these computational costs derive as the following attests. First, the training is 

off-line, that is, training is performed not when real problems are being solved but prior 

on a suite of appropriate examples. Second, in industry one would probably obtain a pre­

trained system, thus avoiding the computational and time costs of the training. The 

consumer then would perceive the acquisition as that o f an expert system.

Since the learning process is extensive, historical precedent provides beneficial cues 

to gauge what duration of learning should be expected, and to know when to concede if 

learning does not manifest itself. For example, the problems attacked by Riolo [1988] 

took between 50,000 and 100,000 cycles before achievement of adequate performance. 

“Alecsys”, which taught a simulated and real robot to find benefits and avoid dangers 

(Dorigo & Schnepf [1991]) needed training on the order o f 100,000 to 1 million cycles
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before the system was considered learned. The current investigation’s environment 

possesses properties which should prove easier to solve than the examples cited, 

therefore, the learning is expected to require less than 100,000 iterations for significant 

manifestations of learning to evolve. Furthermore, if measurable learning has not 

appeared by 500,000 iterations, serious reservations and re-evaluation are in order!

Recall that the genetic algorithm can solve the problems from the environment this 

study’s classifier system is intended to (see Chapter 2, Section 2.5.1). However, as 

shown, the GA approach can take the same magnitude of iterations to solve just one 

problem. Furthermore, the GA does not retain any knowledge from the effort, so when a 

new problem is solved, the solution time is the same as if no prior solves had occurred. 

Therefore, the classifier system shows the promise of learning to solve problems in this 

environment in the same magnitude o f iterations as the genetic algorithm takes to solve 

just one problem! Therefore, if the learned classifier system can then solve additional 

problems in any significantly diminished number of iterations, the overhead o f the 

learning will be justified and the benefit of applying a GA directly will be nil.

3.7 Summary
This chapter provided a pedagogical treatment of the Michigan approach classifier 

system. Due to the complex nature o f the classifier system the review dealt most heavily 

with the aspects which have the most direct impact on this study. The genetic algorithm 

discussion emphasized how the algorithm is applied in conjunction with a classifier 

system. W ith the mechanisms of the classifier system discussed, some applications were 

reviewed and the metrics used to measure its performance were introduced with empirical 

predictions for the expected learning requirements. Table 3.6 summarizes the particulars 

of the classifier system mentioned in regard to this study.
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Table 3.6 Classifier System Specifics fo r  this Research

CS approach Michigan
Behavior classification Stimulus-Response (no bucket brigade)
Environment Structural Shape optimization with stress constraints
Selection Fitness proportionate reproduction
Pairing o f parents Panmictic
Crossover Single point crossover
Initial population Tabula rasa
Population size Static
Replacement & Crowding Steady state genetic algorithm
Expected learning iterations < 100,000
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Chapter

4

Interfacing Shape Optimization with Classifier 
Systems

The previous chapter identified that the classifier system (CS) always needs 

customization for the particular environment to which it is interfacing. This 

chapter demonstrates how the shape optimization environment can be interfaced with the 

classifier system tool. The necessary interplay between the CS and the environment 

dominates the customization. This interplay occurs via three interfaces, detector, effector, 

and feedback, as summarized in Table 4.1.

Table 4.1 Interfaces Overview

Interface Name Abbreviation Summary
Detector DI Senses information important to the 

classifier system from the 
environment

Effector El Effects environment as prescribed by 
the classifier system

Feedback FI Provides supplemental information 
needed by apportionment of credit 
sub-system

The decisions made concerning the interfaces determine many non-interface 

classifier system customizations. The classifier system by definition encompasses the 

three interfaces. The phrase Classifier System Proper (CSP) is defined as the classifier 

system absent the interfaces.

Before proceeding with the details of the interfaces, a digression regarding the CS 

paradigm is appropriate. For engineers to use a classifier system, an adjustment or 

departure from conventional problem solving doctrine is needed. Classifier systems are
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quite different from the conventional search methods (as shown in Chapter 3) 

encountered in engineering optimization in at least the following ways. They:

•  work with a coding of the (design) variables, not the variables themselves,

• search from a population o f rules, not from a single rule,

•  learn from experience,

• use probabilistic operators to guide their search. (By contrast, most common 
engineering search schemes are deterministic in nature.)

As a point of departure, gradient search may be modeled as a classifier system with 

one rule encoding the gradient search technique. If  a set of rules was then created, one 

being gradient search and the others being randomly generated, it would be possible to 

train the system to perform more efficiently or to perform where gradient search could 

not. In this investigation, the classifier system is taught from a random set of rules in an 

environment in which gradient search could not perform because no derivative 

information is provided.

A few global aspects of the CS and its internal workings should be remembered as 

more details are presented. Recall from Chapter 1, Section 1.3 that the CS, in this study, 

performs pattern matching against patterns of stress that occur on and interior to the 

modifiable boundaries, then modifies the boundary in an effort to improve the design. A 

classifier is one such pattern matching rule that also includes a property called strength 

that provides a means of ranking amongst other classifiers. The total population of 

classifiers is fixed in size and usually numbers in the hundreds or thousands.

Chapter 2 provided a background on the general problem o f  shape optimization. The 

current chapter defines the scope o f shape optimization problems over which this study is 

concerned. With the shape optimization scope set, the environment that the classifier 

system interacts with will be defined and the interfaces can be established.
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4.1 Shape Optimization Scope
For this study, the scope is limited to shape optimization problems where the 

objective is to minimize the mass o f a component with constraints on the maximum 

allowable von Mises stress. The mass minimization can occur only via the modification 

o f present boundaries. Boundaries may be deemed fixed or modifiable, furthermore the 

modifiable boundaries may be further constrained by their representation. This scope is 

further clarified below.

Recall from Chapter 2 that the optimization problem may be formalized as:

minimize: f ( x )

subject to: gc( x ) < 0

g, (x) < 0 (4.1)
where for this study,

x  Vector o f design variables which define modifiable surface(s).
f(x )  Mass of the design as a function o f the design variables.
g e(x) Vector o f explicit constraints consisting o f limits for each design

variable’s dimension. 
gi(x) Vector of implicit constraints including:

1 . Maximum allowable von Mises stress & allowable error.
2 . Restrictions on design variable allowable movement

directions.
3 . Minimum rate o f improvement.
4 . Maximum allowable iterations for convergence.

The objective is to minimize the mass of the design by manipulation o f the boundary. 

The representation of the boundary and design variables was discussed in Chapter 2, 

Section 2.4.1. The explicit constraints consist of the bounds placed on the design 

variables, if any. The control points defining the boundary are the design variables. The 

major implicit constraint is the maximum allowable von Mises stress, since the 

optimization performed in this study is relative to stress. The other implicit constraints 

deal with the termination criteria. One criterion is that the process must terminate if  all 

the design’s stresses are within a certain percentage o f the maximum allowable. Another 

states that if the incremental improvement o f the design is falling below a certain

65

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

threshold then optimization must cease. Finally, a constraint is placed on the maximum 

number of iterations that may occur before terminating the optimization. There are also 

many non-formalized constraints including, limitations o f the analysis technique 

accuracy, boundary representation limitations and statistical variation in material 

properties.

This study’s scope does not cover the boundary representation module; but since the 

optimization module must interface with the boundary representation module it must be 

cognizant of the representation used. To this end the optimization module developed 

works with many different boundary representations, however, the optimization module 

will be restricted to working with boundary representations where the design variables are 

actually on the design boundary. This restriction still allows for most boundary 

representations including:

• lines, arcs, circles, ellipses,

•  cubic splines (where the design variables are the points through which the 
cubic splines pass),

•  surface patches.

The intention is to permit the designer the flexibility needed to construct the initial design 

with boundary representations appropriate for the situation, from which the optimization 

module will use the boundary representations as additional constraints.

4.2 Interfaces Overview
The detectors (Chapter 3, Section 3.1.1) provide component state information to the 

classifier system proper, the effectors (Chapter 3, Section 3.1.1) provide the means for the 

CSP to modify the component, and the feedback interface provides the apportionment of 

credit sub-system (Chapter 3, Section 3.1.2) of the CSP with information (about the 

component’s change o f state) needed for learning. Figure 4.1 displays a simplified view 

of the interfaces.
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Feedback InterfaceEffectorsDetectors

Shape Optimization Environment

Classifier System Proper

Figure 4.1 Interfaces Flowchart

Again, for shape optimization, the environment consists o f  one solid component 

under static loading, the optimization of which may be summarized as:

a search through the space of determining the best boundary enclosing the 
material which best meets the design criteria while simultaneously 
satisfying all the design constraints.

With this in mind, the representation scheme implemented in this investigation modifies

the boundary o f the design in its quest for improvement.

The detectors filter the available information and process the stress information at 

control points and at points near each control point; this is fully covered in Section 4.3. 

The detectors convert the stresses to a binary representation, and formats them into 

environmental messages. An Environmental Message (EM) format corresponds to the 

format expected by the classifier’s antecedent. The detectors create one environmental 

message per control point.

The effectors receive the action from the CSP, create a modification vector from the 

binary action, and finally affect (i.e., modify) the component. The component is modified 

via the modification vector moving one (or more) control point(s), which redefines the 

component’s boundary. Section 4.4 fully covers the effector interface.
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The feedback interface collects additional information required by the classifier 

system proper’s AOC module. The AOC module collects the information it may later 

need from the detectors, however, if additional information is required the feedback 

interface collects it. In this investigation, the detectors collect all the requisite stress 

information but ignore mass information, thus the feedback interface collects the required 

mass information. Section 4.5 covers the feedback interface in detail and its relation to 

the AOC module. Figure 4.2 shows in more detail the information flow between the 

environment and the classifier system proper.

Shape Optimization Environment

Detectors
von Mises stress 

@ control points 
@ straddle points 
@ interior point 
Maximum allowable

Effectors
Control Point to modify 
Modification vector

Feedback Interface

Mass of component

Classifier System Proper

Figure 4.2 Interfaces Flowchart fo r  Shape Optimization Environment

4.3 Detectors
The detectors filter all the information produced by the environment, sensing only 

the subset deemed important by the classifier system. The issues addressed by the 

detectors drive many of the choices made regarding the format of the classifiers and other 

internal characteristics.

The shape optimization environment provides a slew of information to the detectors 

for potential sensing. Using the example of a finite-element analysis module, information 

available for sensing may include:
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• stresses,

e.g., von Mises, P rincipal,... 

e.g., at control points, at nodes,...

• strains & displacements,

• mass o f structure,

• node & element information,

• sensitivities,

e.g., of stress, o f s tra in ,...

• deflections.

This study will only utilize the minimum criteria (as presented in Chapter 2, Section 2.3). 

This eliminates:

•  sensitivities,

• element information,

•  node information,

from the potentially sensed information. This leaves stress, strain, deflection, and mass 

information as candidates.

In this study, the von Mises fa ilure criterionf (Shigley & Mitchell, [1983]) is 

employed. Therefore, with regard to stresses, only von Mises stresses are o f concern. 

Furthermore, no constraints are placed on displacements so global deflection is not 

sensed. This narrows the list o f possible sensed information to:

•  von Mises stresses at particular locations,

•  mass of structure.

The remaining von Mises stress issue is: at what locations should von Mises stress 

information be sensed? Since the effect of the system is to move control points which 

define the modifiable boundaries, the system should at least sample the von Mises stress 

at all the control points. Recall that the CS is learning to pattern match, i.e., sense a

Also called the maximum-dislortion-energy fa ilure criterion.
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pattern and then prescribe the correct effect. Therefore a pattern of the stress state in the 

zone around each control point should be presented to the CS. A simple scaleable 

arrangement is employed, as discussed below.

Control Point

Control Point with Associated Stress Sensing Locations

Figure 4.3 illustrates the locations for stress sensing for the two-dimensional case. 

The sensing occurs at each control point (the box in Figure 4.3), two straddle points 

(represented as circles on the surface in Figure 4.3), and an interior point (represented as a 

circle interior to the control point in Figure 4.3). The straddle points are two points, one 

on each side of the control and lying on the boundary. The interior point is a point 

interior to the control point lying on the line defined by the surface normal at the control 

point. Each (non-control) point is one global element length (EL) from the control point. 

For the interior point the distance is measured along the surface normal at the control 

point. For the straddle points, the distance is measured along the actual boundary 

geometry. The global element length is a user specified parameter, if the finite-element 

method is used in the analysis module then a global element length is equivalent to the 

length of the elements defined along the boundary. However, if another method is used, 

a global element length is still needed, as described below, and should be set to a value 

appropriate for the model if the finite-element method was being applied.

The classifiers’ format is driven by the input to which the classifiers are to match.

The classifiers will now see a maximum of four distinct stresses per control point (in the 

two-dimensional case), as well as the mass. The mass does not appear to play a role in 

mapping a control point’s state to beneficial modifications. Therefore the mass will be 

ignored by the detectors, (however, the feedback interface does sense the mass).
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For scalability from two-dimensional to three-dimensional problems, the straddle 

point stresses will be compared by the detectors and only the most prom inent will be 

passed as a message to the classifier population. Prominent in this context means the 

stress whose value differs greatest from the maximum allowable von Mises stress. The 

concept of prominent straddle points allows for a seamless extension to three-dimensional 

cases. In three dimensions the number of straddle points per control point may vary 

depending on the boundary representation, however, the concept of prominent straddle 

point leads to only one straddle point being of interest irrespective of how many exist per 

control point. Algorithm 4.1 presents the algorithm for determining the prominent 

straddle point stress.

Algorithm 4.1: Prominent Straddle Point Stress Algorithm___________________
I. Define:

Cto = maximum allowable von Mises stress

° s ' r = von Mises stress at straddle point k

G prv  str = von Mises stress of prominent straddle point

N sir = number of straddle points

II. < C = 0 i r
II. FOR (k = 2 to Nstr)

IF l a * r - a 0 l > l a ^ r - o 0 l

TH EN <5s,r  =

The above shows that the detectors sense (per control point) the von Mises stresses at 

the control point, at the interior point, and at each straddle point. From this information 

the detectors determine the prominent straddle point per control point and then processes 

the three stresses into a detector message; one detector message is created per control 

point. A detector message is a binary string representing sensory input. To create a 

detector message the environmental input (stresses in this study) must be mapped to a 

binary alphabet. The detector message format determines the format of the classifiers’ 

antecedent because the detector messages must match the format o f the classifiers’ 

antecedent.
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Before proceeding further, the format o f the detector messages needs to be 

established. The main consideration is the appropriate granularity; the environment is 

continuous but the detector messages discretize the input. The level of desired 

granularity then determines the length o f the detector message. However, the detector 

message can only cover a range. Thus, the range must be established before the 

granularity can be set. The optimal condition occurs at the maximum allowable von 

Mises stress, therefore, this is an appropriate value to have as the midpoint of the range. 

Using a linear mapping, the extremes would then logically be zero stress and twice the 

maximum allowable von Mises stress. If any stress is encountered greater than twice the 

maximum von Mises stress, the detectors would convert it to being equal to twice the 

maximum von Mises stress, creating the maximum detector message. If this range is 

found to be too restrictive it may always be increased. The Normalized von Mises Stress 

is defined as the von Mises stress mapped to the range as described above and then 

divided by twice the maximum allowable von Mises stress, resulting in a number between 

0 and 1. The optimal normalized von Mises stress occurs at a value of 0.5.

With the range set, the granularity and thus the detector message length can be 

determined. Recall that a binary string representing a range divides the range into a 

number of discrete quanta equal to,

2 L

where L  is the string length. The issue is then: how many equal divisions (2, 4, 8, 16, 32, 

64, 128,...) of the stress range are needed so that the divisions are discriminating enough 

for intelligent processing? As with the other aspects of the detector message format, there 

are not absolute rules to follow; only empirical precedents. Limiting the resulting string 

length is a significant consideration. The reason is that the CS and GA are searching the 

space of all possible strings, the longer the string the exponentially larger the search 

space! Thus it is better to err on the side o f having too short a string length, and only 

increasing the length when necessary.
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This study initially tried 64 divisions, resulting in a detector message length of 6 for 

each o f the stress points. This may appear woefully coarse to engineers accustomed to 

working in a continuous domain. If the divisions are too coarse the system may exhibit 

oscillatory behavior because the system can not discriminate enough to converge to the 

point of triggering the convergence termination criterion. Once again, if  this occurs a 

longer bit string can be adopted.

All the important aspects of the detector messages have now been defined, only a 

bookkeeping decision needs to be set so the detector messages can be assembled into 

environmental messages. An environmental message is simply a concatenation of the 

three detector messages via a defined ordering. The environmental messages are the 

messages that must agree in format to the classifier antecedents. The ordering o f the 

detector messages in the environmental message is defined as,

Prominent straddle point stress Control point stress Interior point stress

The ordering is not important to the operation of the classifier system, only that it is 

consistent. The detector and environmental messages definitions are now complete. The 

algorithm for the detectors and the creation o f environmental messages is shown in 

Figure 4.4.
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Determine the prominent straddle point for each 
control point

Detector message creation: Multiply Normalized 
stresses by (2L-1), round to nearest integer, 

________ convert to 6-bit binary number________

Normalize stresses by dividing each by 2*ao and 
setting any result > 1 to 1

Environmental message creation: Concatenate 
detector messages for each control point into 

environmental messages

Detect the von Mises stresses:
@ each control point 

> each control point’s 2 straddle points 
@ each control point’s interior point

Figure 4.4 Environmental Message Creation

The antecedent (i.e., the i f  portion) of the classifiers is now defined by the 

requirements of the environmental messages generated from the detector messages. 

Table 4.2 lists the antecedent properties.

Table 4.2 Antecedent Definition

Antecedent length 18
Alphabet o f  antecedent {0.1,#}
Number o f conditions 3
Condition 1 length 6
Condition 1 message Match prominent straddle point’s detector message
Condition 2 length 6
Condition 2 message Match control point’s detector message
Condition 3 length 6
Condition 3 message Match interior point’s detector message
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Figure 4.5 illustrates the detector interface. The enclosed boundary in Figure 4.5 

represents the boundary of a component. The boundary on the right side of the component 

is modifiable and therefore discretized. The boxes represent the control points defining 

the boundary. The circles represent the straddle points and the interior point. Moving to 

the column titled Normalized von Mises Stress, the top value represents the stress o f the 

prominent straddle point, the middle value control point k , and the bottom the interior 

point. The next column shows the same stresses converted to detector messages (binary 

representations). The final column shows the antecedent of a classifier that matches the 

binary representation. The classifier rule consists of an antecedent having three 

conditions. The complete antecedent is shown boxed. Notice the antecedent is the 

concatenation of the three conditions in the right column.

Norm alized  
Von M ises Stress

l . l 7 7 e - 0 1

Control points

Binary Antecedent o f  a
R epresentation M atching C lassifier

000001

001000

000111

00# * « 1

0#0 0 0«
# 00*11

Complete antecedent o f matching classifier: 
0 0 # # # 1 0 # 0 0 0 # # 00# 11

Figure 4.5 Example of a Classifier Matching the Stress Condition at Control Point k

4.4 Effectors
The effectors receive the consequent (i.e., action) of the auction’s victorious 

classifier, translating the binary consequent into a form compatible with the effectors; the 

effectors then modify the environment (see Chapter 3, Section 3.1). The type o f desired 

environmental effects drive the consequent’s format.
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The effectors modify control points defining the boundary in the shape optimization 

environment. Therefore, the consequents must be mapped from a binary representation 

by the effectors to a modification of the corresponding control point. The control point’s 

modification consists o f the distance to move and the direction o f  the move. For many 

types of boundary representations, the representation constrains the direction. These 

include all sizing shape optimization type boundaries such as boundaries defined by a 

circle, ellipse, thickness, and such. Even more general boundary representations 

consisting of splines may have constrained directional freedom set by the user. For 

example, if a spline curve is defined as in Figure 4.6, the dimensions may act as 

constraints, constricting the control points to moving collinear to  the dimension.

lD
to

CDO
CM

ro

Figure 4.6 Spline Curve with Dimension Constrained Control Points

In the case where a control point is not constrained in its directional freedom; the 

direction of movement occurs collinear to the surface normal. This discussion shows that 

the effectors work in conjunction with the boundary representation to determine the 

direction o f movement and therefore the classifier consequent does not factor into the 

direction determination

The remaining variable for the consequent to control is the control point’s move 

magnitude. The range o f  possible movements is extensive —  the system should be able 

to optimize components used in structures ranging from bridges to micro-machinery. To 

design a consequent with enough range and fidelity to optimize such a wide swath
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necessitates an extended consequent. A rational solution is to have the consequent be a 

relative move magnitude, independent of the scale of the component. As is conventional 

in optimization systems, move limits are imposed on each control point (Fleury [1986]). 

The move limits define the range used to transform the relative movements to physical 

movements.

The initial move limit is based on the user defined, global element length (EL).

After a control point has been moved three times, approximate functions o f stress versus 

control point location are generated. Algorithm 4.2 defines the move limit algorithm. 

Now, the purpose of the classifier action or consequent is defined as well as the process 

followed by the effectors. The consequent or action is, a positive or negative number 

equal to the control point’s relative move magnitude.

Algorithm 4.2:______ Move Limit Algorithm______________________________________

For Control Point Moves 1 & 2

I. IF (4 * EL) < (dim_value - lower_limit)/2 
THEN maximum move = 4*EL 
ELSE maximum move = (dim_value - lower_limit)/2

For Control Point Move 3 &  Greater

I. Perform least-squares fit o f past iterations, using
Linear
Inverse
Inverse squared 
Inverse cubed 

fitting functions.
II. Use the best fit as estimate function for stress as a function of the control point 

dimension.
III. IF stress < maximum allowable von Mises stress

THEN maximum move = estimated move to reach three times maximum
allowable

ELSE maximum move = three times the estimated move to reach maximum
allowable.

The effector interface consists of the following processes:

1. Reception o f the victorious classifier’s consequent.

77

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

2 . Conversion of binary consequent to relative move magnitude.

3 . Mapping of the relative move magnitude onto the range defined by the move 
limit, converting it to a physical magnitude.

4 . Modification (by the effectors) of the control point’s location by the physical 
m agnitude’s distance in the direction defined by the constraints of the control 
point’s definition or along the surface normal (if no definition supersedes).

With the purpose of the consequent defined, the length is set to establish the 

appropriate number o f gradations in relative magnitude. For this study the initial number 

o f gradations will be 64. This defines a consequent length o f 6 , because 26 = 64. Table 

4.3 presents the consequent’s definition.

Table 4.3 Consequent Definition

Alphabet {0 , 1 }
Length 6

1 1 1 1 1 1 Largest positive relative magnitude
0 0 0 0 0 0 Largest negative relative magnitude
Positive Direction away from surface (i.e., along positive surface normal or closest 

possible via constraint)
Negative Direction into component (i.e., along negative surface normal or closest 

possible via constraint)

Table 4.3 shows that the largest positive relative move occurs when the consequent has 

the value of 111 111, similarly the largest negative relative move occurs when the 

consequent has the value o f 000000. For the general case, the relative move magnitude is 

determined by converting the consequent’s binary string into its equivalent decimal 

representation, which will be a number between 0 and 63. The mapping of the relative 

move magnitude onto the range defined by the maximum move is accomplished as 

follows:

relative move magnitude -  31.5 
physical magnitude = ------------------- —-------------------- * maximum m ove.

Again, the consequent length selection may initially appear too coarse. However as 

the system nears the optimum, the range defined by the move limits also decreases,
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resulting in ever finer control point manipulations. In addition, the consequent length can 

be increased if found unsatisfactory.

Multiple Control Point Modification
Modifications to a design occur after all classifiers that match an environmental

message bid for the right to execute its action. When the victorious classifier invokes its 

action it occurs at the control point that corresponds to the environmental message at 

which the victorious classifier’s bid occurred. This is termed the: single-control-point 

modification technique.

The single-control-point modification technique may be extended into a potential 

multiple-control-point modification technique. The reason the technique is termed 

potential is that, as will be shown, multiple control point modifications occur only under 

certain situations. As in the single-control-point modification technique, only one 

classifier wins the auction, and the winner has one control point on the design for which it 

matched when it generated the winning bid. However, the victorious classifier may have 

also matched other environmental messages. In the single-control-point modification 

technique, the control points corresponding to the other environmental messages are left 

without modification. Now the victorious classifier is permitted to modify all control 

points for which it matches. This gives the effectors the potential to modify multiple 

control points in a single design iteration, although this will not always be the case 

because in many instances only a single point will match the victorious classifier. This 

study employs the multiple-control-point modification technique exclusively.

Illustration of Multiple Control Point Modification
The following demonstrates a situation where multiple control points are modified

by the action of one classifier. In Figure 4.7, three boundary pieces are represented. The 

pieces could all come from the same modifiable boundary or they could reside on 

separate boundaries. One useful conception has the uppermost boundary piece taken 

from a boundary represented by a spline where the control point moves normal to the 

surface; the middle boundary piece is from an arc, and the lowermost boundary is 

constrained to remain straight.
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Column A shows the normalized von Mises stress with the prominent straddle point 

first, the control point second, and the interior point third. Column B shows the binary 

representation o f the corresponding normalized von Mises stress. Column C shows the 

conditions of the classifier that actually won the auction. The antecedent o f a classifier 

consists of 18 fields, the first 6  fields try to match the stress o f prominent straddle point, 

the next 6  fields attempt to match the stress of the control point, and the last 6  fields 

attempt to match the stress o f the interior point. So in Column C the 18 fields of the 

antecedent of the winning classifier have been broken up into its 3 conditions to illustrate 

the matching that occurred.

Observing the other stress patterns, it may be noticed that the lowermost control 

point’s stresses also match the winning classifier’s antecedent.

Case

Case 2

Case 3

A.
Normalized 

Von Mises Stress

3.342e-02
1.17le-02 
4.564e-02

7.536e-02
3.019e-03
6.986e-02

5.086e-02
5.564e-02
5.522e-02

B.
Binary

Representation

000010
000001
000011

000101
000000
000100

000011
000100
000011

c.
Conditions of  

Victorious Classifier

0 0 0 0 1 #
0 #####
000#11

0 0 0 0 1 #
0 # # # # #
0 0 0 # 1 1

Figure 4.7 Multiple Control Point Modification Illustration

In this illustration, modifications would take place at 2 control points. The full 

classifier antecedent is:
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0 0 0 0 1 # 0 # # # # # 0 0 0 # 1 1 .

Therefore whatever the action of this classifier is, the effectors execute the action at 

both control points. Since the design modification for every iteration is due to a single 

classifier; the merit of the design modification can be judged, and feedback can be 

correctly sent to the classifier which is solely responsible.

4.5 Feedback Interface: Apportionment of Credit
The feedback interface monitors modifications to the environment in order to 

propagate feedback to the classifier system’s apportionment of credit sub-system during 

learning mode (see Chapter 3, Section 3.1.2). The apportionment o f credit sub-system 

then punishes or rewards the classifier which instigated the environmental modification.

Classifier systems require only punishment/reward type feedback, in contrast to 

correct answer feedback. Feedback consisting o f punishments and rewards can be 

determined by only knowing if the CS’s actions caused a beneficial or detrimental effect. 

Thus the CS can learn in situations where the correct or perfect modification is not known 

a priori. In addition, any available supplemental information may be used to enhance the 

learning process, exhibiting yet another example of the classifier system ’s flexibility.

For the shape optimization environment, the feedback consists o f whether the 

modification resulted in a more optimal or less optimal design. In addition to answering 

this question, it is not difficult to supply ranking to the feedback. The input interface 

collects all the requisite stress information but ignores mass information. It is the 

feedback interface that collects the required mass information. In many cases the change 

in mass provides a viable ranking o f the change when no stress constraint violations 

occurred pre or post modification. For more complicated situations, other considerations 

need to be factored.

Recall that for this study’s structural design optimization, the objective function 

minimizes the mass, while constraints include maximum limits on the von Mises stress. 

For stress constrained optimization problems, the Total Normalized Stress Error (TNSE),
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as defined in the work by Hsu [1992], complements the mass as an evaluator. The TNSE 

is defined as:

TNSE =  , (4.3)

where,
m  Number of control points on a boundary,
afc von Mises stress at control point k.
a 0 Maximum allowable von Mises stress.
Ask H alf the cord length between Sk+i and s n  along the boundary.

The TNSE may be thought of as the entropy of stress, and a necessary (but not 

sufficient) optimal design condition is one of minimum entropy. Therefore, the change in 

mass and the change in TNSE per cycle are the primary feedback components.

With knowledge of the changes in stress and mass, and with TNSE defined, a matrix 

may be set up showing whether the modification proved beneficial or detrimental. This 

decision matrix is shown in Table 4.4. Further particulars of the application o f the 

Modified Design Decision Matrix to the AOC module are deferred to Chapter 5, Section 

5.2.2.
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Table 4.4 Modified Design Decision Matrix

Lighter 

Prev: No viol

Lighter 

Prev: Violations

Heavier 

Prev: Violations

Heavier 

Prev: No viol

TNSE I  

No violations Beneficial Beneficial Beneficial Detrimental

TN SE i  

V iolations Beneficial Beneficial Beneficial Detrimental

TNSE T  

No violations Beneficial Beneficial Detrimental Detrimental

TNSE T 

Violations Detrimental Detrimental Detrimental Detrimental

Legend

Lighter 
Heavier 
Prev: No viol

Prev: Violations

TNSE I  
TNSE T 
No violations

Violations

Mass decreased 
Mass increased
No von Mises stress in the design was greater than the 
maximum allowable von Mises stress in the previous 
iteration’s design
At least one von Mises stress in the design was greater
than the maximum allowable von Mises stress in the
previous iteration’s design
The total normalized stress error decreased
The total normalized stress error increased
No von Mises stress in the design is greater than the
maximum allowable von Mises stress
At least one von Mises stress in the design is greater
than the maximum allowable von Mises stress
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4.6 Interfaces: In-depth Review
With the details of the interfaces defined, a detailed information flow diagram of all 

the external interactions may be constructed. Figure 4.8 displays the information flow in 

and out of the CSP categorized by interface.

Environment

Constraints Loads

Control points

1L

Detectors Effectors
Iteration 1: Iterations - all:

Mass of component 1. Receive consequent of
o„ victorious classifier.
Dimension limits 2. Receive control points to
Global element length modify.

Iterations - all: 3. Determine move limits
a UYn @ control points 4. Map relative move to physical
o vm @ straddle points move.

ov„„ (S ' interior points 5. Modify control point(s) along 
surface normal or as 
constrained

U i

Feedback Interface
( lea rn in g  m ode)

Iterations - all:
Mass of component

Classifier System Proper

Figure 4.8 Shape Optimization Environment and Classifier System Proper Interactions

4.7 Computational Complexity
As discussed in the previous sections, many decisions affected the size o f the 

classifiers. In all cases, the goal of minimizing the resulting classifier length played an 

influential role in the decisions. This is due to the exponential growth of the search 

space. Now that the format o f the classifiers has been determined to consist o f  an
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antecedent o f length 18 from a tertiary alphabet and a consequent of length 6  from a 

binary alphabet, the total classifier search space is:

Number o f possible classifiers = 3 1 8 * 2 6

> 2.479 * 1010.

The classifier system’s goal then is to create the best population (on the order of 

1 ,0 0 0  classifiers) for mapping the stresses received from the detectors to effects which 

most effectively and efficiently shape optimize components. The system was expected to 

do this by only sampling on the order of,

4 E -04 %

of the total space o f possible classifiers. The task is daunting, but if accomplished, 

demonstrates the incredible utility of such a tool to the mechanical engineering 

community.

4.8 Summary
This chapter began by defining the scope of shape optimization problems this study 

investigates. After which the bulk of the chapter constructed the mechanisms by which 

information flows between the shape optimization environment and the classifier system 

proper. The information flow into, and the types of results desired from the classifier 

system proper, defined much o f the internal characteristics o f the classifier system. Table 

4.5 summarizes this research’s developments to this juncture.
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Table 4.5 Snapshot of Research Developments

Objective Minimize Mass
Scope Shape optimization (subsumes size optimization). Flexible to a wide range of 

initial designs, which may be feasible or infeasible.
Efficiency Competitive with modem optimization techniques when within their scope. 

Orders of magnitude better than systems which have same scope.
Effectiveness Optimums as good as any other technique.
Information for Optimization Minimum criteria, system performs zeroth-order optimization
Use of aux. info Extendible to exploit auxiliary information
Analysis Independent of analysis method
Boundary Rep Flexible to most boundary representations
Algorithm Learns optimization (no hard coding of algorithm)
Design variables Control points defining the modifiable boundaries
Failure criterion von Mises
Failure constraint Maximum allowable von Mises stress
Design variable constraints Limits on allowable dimensions (if any) 

Restrictions on directional freedom of movement
Termination constraints Percent deviation from optimal stress to be considered optimal 

Minimum rate of improvement 
Maximum number of iterations permitted

Stress range 0 to 2 * o„: larger stresses mapped to (2 * a 0)
Detector range 0 to 2 * ao: larger stresses mapped to (2 * a0)
Detector message format 6 bits

# per control point 3
First Prominent straddle stress
Second Control point stress
Third Interior point stress

Environmental message format 18 bits: Concatenation of detector messages
Specificity Dependent on # location
User input Initial design, with design variable constraints 

Maximum allowable von Mises stress 
Global element length 
Termination constraints

Direction of control point Determined by boundary representation or surface point modification normal
movement vector
Antecedent length 18
Alphabet of antecedent (0.1.#)
Number of conditions 3
Condition 1 length 6
Condition 1 message Match prominent straddle point's von Mises stress
Condition 2 length 6
Condition 2 message Match control point’s von Mises stress
Condition 3 length 6
Condition 3 message Match interior point's von Mises stress
Consequent Alphabet (0.1)
Consequent Length 6
Consequent range 111111 : Largest positive relative magnitude 

000000 : Largest negative relative magnitude
Positive Direction away from surface (i.e.. along positive surface normal or closest 

possible via constraint)
Negative Direction into component (i.e.. along negative surface normal or closest 

possible via constraint)
Number of possible classifiers > 2.4* 10"'

8 6
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Chapter

5

SPHINcsX Algorithm & Learning Suite

This chapter details the complete algorithm used by the Shape optimization via 

Hypothesizing Inductive classifier system compleX (SPHINcsX). In order to 

apply the algorithm in learning mode, a suite o f problems is needed. This chapter defines 

the learning suite o f designs used to teach SPHINcsX shape optimization.

5.1 SPHINcsX Algorithm
This section describes the learning algorithm used by SPHINcsX in the shape 

optimization process. Algorithm 5.1 provides the basic outline, with references to where 

details of the steps may be found. Many of the steps were developed in Chapters 3 and 4 

and the balance will be discussed in the following subsections. Algorithm 5.1 

complements and clarifies the information flow provided in Figure 3.10 which detailed 

the classifier system and its interaction with the environment. A more detailed version of 

the algorithm used by SPHINcsX may be found in Appendix B.

Recall from Chapter 3, Section 3.1 that the CS has two major modes in its 

application to most problems. These are the learning mode and application mode. During 

the learning mode the system learns to operate in the structural component shape 

optimization environment. After learning, the CS is applied to problems using its learned 

rules similar to an expert system. The application mode is a subset o f the learning mode. 

Algorithm 5.1 shows SPHINcsX with the classifier system in learning mode.
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Algorithm 5.1: SPHINcsX Algorithm in Learning Mode

Initialization, Termination & Genetic Algorithm Modules
I. Initialization of Classifier System (Chapter 5, Section 5.2)
II. Initialization of a design to be optimized (Chapter 5, Section 5.3)
III. Increment: problem iteration and learning iteration.
IV. IF learning termination criteria met, terminate. (Chapter 6)
V. IF epoch completed; apply genetic algorithm.
VI. Continue to Optimization/Learning Loop.

Optimization/Learning Loop
I. Analysis Module Iterations all (Chapter 2, Section 2.4.2)
II.A. Feedback Interface Iterations i > 1 (Chapter 4, Section 4.5)

Read mass of design at iteration i
B. Apportionment of Credit Iterations / > I

Determine if the design has improved or deteriorated, reward or punish.
III.A. Detector Interface Iteration: 1 (Chapter 4, Section 4.3)

Read: Mass, Maximum allowable von Mises stress, Limits on dimensions
Global element length 

B. Detector Interface Iterations: all
Read: von Mises stress at: control points, straddle points, interior points 

Create environmental messages
IV. Auction module Iterations: all (Chapter 3, Section 3 .1.2.1)

1) Match environmental messages with classifiers.
2) IF no classifiers matched in 1), apply the tr iggered  co ver  detec to r

opera tor. Skip to step IV .5
3) Auction: Have all the classifiers that matched compete in an auction to determine 

which one shall be permitted to execute its action.
4) Pass the action of the classifier that won the auction to the effectors.
5) Record the victorious classifier for this iteration.

V. Collect taxes Iterations: all (Chapter 3, Section 3 .1.2.3)
VI. Effector Interface Iterations: all (Chapter 4, Section 4.4)

Modify all control points which matched the victorious classifier.
VII. Termination criteria Iterations: all (Chapter 4, Section 4.1)

1) IF stresses are within e of the optimum, terminate & return to Initialization,
Termination & Genetic Algorithm Module step //.

2) IF iteration i is greater than a user supplied maximum, terminate & return
to Initialization, Termination & Genetic Algorithm Module step II.

3) IF none of the above termination criteria are satisfied, continue.
VIII. Set the active design to the design created in step VI; increment the problem iteration 

and the learning iteration.
IF epoch completed; return to Initialization, Termination & Genetic 

Algorithm Modules step IV.
ELSE return to step I.
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5.2 Initialization of Classifier System
Much of the structure of the classifier system was defined in Chapter 4, see Table 

4.5. The initialization of a classifier system is concerned with the parameters of the 

classifier system. For example, the CS’s structure defines the format of the individuals in 

the population, the size o f the population and the initial individuals (which meet the 

requisite structure) are parameter settings. The following sections describe the 

initialization o f the classifier system in detail.

5.2.1 Initial population
The determination of the best population size is an area that classifier system research has 

not addressed completely. Results from other studies and simulations (Horn, et al.

[1994]) provide some guidelines for reasonable population size settings. The 

computations required by an oversized population are relatively small compared to the 

computations needed to evaluate the stresses in the shape optimization environment. For 

these reasons a population of, 1,000 is employed. The actual classifiers which are used 

during learning are tracked, so if the system learns while only using a subset of the 

population then it will be known that the population size is adequate. Furthermore, the 

population can be reduced to include only active individuals if  desired. Contrarily, if all 

the classifiers are being employed and the learning does not progress to a learned state, 

the remedy may be to increase the population size.

As stated previously (Chapter 3, Section 3.4) a tabula rasa will be used for the initial 

population. However, a parameter needs to be set which determines the probability o f 

picking a #. The population is created by picking a 0, 1, or #  for each position for each 

classifier’s antecedent. The probability o f picking a #  for each position is determined by 

the, #  probability parameter, for each position for which a #  is not selected, there is an 

even chance a 0 or 1 will be picked. The consequent for each classifier is created by 

selecting a 0  or a 1 for each position with equal probability.

89

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

The #  probability parameter is set to 0.6. The complete initial tabula rasa 

population algorithm is shown in Algorithm 5.2. Since the algorithm uses stochastic 

operators the algorithm has a non-deterministic result.

Algorithm 5.2: Initial Tabula Rasa Population Algorithm________________

Main Loop
I. Set classifier number, j, equal to 0.
II. Set j = j  + 1
HI. Set antecedent position counter, k, equal to 0
IV Set consequent position counter, 1, equal to 0
V. Continue to Antecedent Loop
VI. Continue to Consequent Loop
VII. IF j  > 1,000 population generated 

THEN Stop
ELSE Return to step II.

Antecedent Loop
I. S etk  = k+1
II. Flip biased coin with 60% chance o f landing heads
III. IF coin landed heads

THEN set position k o f antecedent to #
Skip to step VI

ELSE continue
IV. Again flip unbiased coin with 50% chance of landing heads or tails
V. IF coin landed heads

THEN set position k o f antecedent to 0 
ELSE set position k  o f antecedent to 1

VI. IF k = 18
THEN Exit Antecedent Loop 
ELSE Return to step I.

Consequent Loop
I. Set 1 = 1+1
II. Flip unbiased coin with 50% chance of landing heads or tails
III. IF coin landed heads

THEN set position 1 o f antecedent to 0 
ELSE set position I o f antecedent to 1

IV. IF 1 = 6

THEN Exit Consequent Loop 
 ELSE Return to step I._________________________________________________
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5.2.2 Apportionment of Credit Parameters
The feedback structure o f the apportionment o f credit sub-system was described in 

Chapter 4, Section 4.4. The discussion presented a decision matrix, Table 4.4, for 

determining whether a design modification proved beneficial or detrimental. The amount 

of reward paid to a classifier that causes a beneficial design modification can be scaled 

since the amount o f improvement is quantifiable. Table 5.1 shows the evaluator used to 

scale the improvement for beneficial modifications. This matrix corresponds to the upper 

left portion of the matrix shown in Table 5.1. In the case of a detrimental modification an 

implicit punishment is implemented.

Table 5.1 Evaluator fo r  Beneficial Modifications

Lighter 

Prev: No viol

Lighter

Prev:

Violations

Heavier

Prev:

Violations

TNSE I  

No violations AMass AMass ATNSE

TNSE I  

Violations AMass AMass ATNSE

TNSE T 

No violations AMass AMass

Table 5.1 shows that the distinguishing feature determining the use of AMass or ATNSE 

as the evaluator is whether the modified design is lighter or not. Algorithm 5.2.2 presents 

how the evaluators are utilized to provide reward. In addition the punishment technique 

is explained.
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Algorithm 5.3: Reward and Punishment Algorithm

I. IF modified design better (see Table 4.4)
THEN Continue to Reward Section  
ELSE Continue to Punishment Section

Reward Section

I. IF modified design lighter
THEN Continue to step II 
ELSE Continue to step IV

II. Calculate the change in the mass between the modified design and the
pre-modified design. The change is the ratio of; the difference between the
pre-modified design’s mass (mj) and the modified design’s mass (m/+ ]), and the 
pre-modified design’s mass, the result is set to AMass.

AMass -  m' ~  m‘+] 
m,

III. Set the Reward to AMass multiplied by the Reward Coefficient.
Reward = AMass * (Reward Coefficient)

Jump to step VI.

IV. Calculate the change in the TNSE between the modified design and the
pre-modified design. The change is the ratio of; the difference between the
pre-modified design’s TNSE (TNSEj) and the modified design’s TNSE
(TNSEj+ ]), and the pre-modified design’s TNSE, the result is set to ATNSE.

TNSE. -  TNSE.+,
ATNSE =

TNSE,

V. Set the Reward to ATNSE multiplied by the Reward Coefficient.
Reward = ATNSE * (Reward Coefficient)

Continue to step VI.

VI. Update the Strength of the classifier.
IF Strength + Reward < 20 
THEN Strength = Strength + Reward 
ELSE Strength = 20

Punishment Section

I. No explicit punishment. Classifier is implicitly punished because the classifier’s
winning bid decreased its strength (see Chapter 3, Section 3.1.2.2).____________
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During the development of SPHINcsX the Reward Coefficient was adjusted and the 

resulting affects on the learning process were observed. The value o f 7.5 proved to 

provide a good level of positive feedback.

5.2.3 Auction Parameters
Chapter 3, Section 3.1.2.1 provided the structure and equations used by the auction 

module. Table 5.2 shows the auction parameters used by SPHINcsX. The parameters 

where determined via guidelines provided by previous studies (e.g., Goldberg [1989]) and 

experimentation conducted for this study.

Table 5.2 Auction Parameters

Classifier Bid Coefficient ko 0 .1

Bid Coefficient 1 ki 0 .1

Bid Coefficient 2 k2 0.0833
BidRatio exponent BRPow 1 .0

Standard deviation o f noise t̂ bid 0.15

5.2.4 Tax Parameters
Chapter 3, Section 3.1.2.3 provided the structure and equations used for taxation. As 

described there is an algorithmic approach for setting the Life Tax utilizing the free-fall 

half life, which gives,

(1 /  2 )ll/n) = 1 — TaxUfe 

Taxhfr = 1 -  (1 / 2 ),I/n)

The parameter, n, is the epoch length. Section 5.2.5 below shows that this study uses an 

epoch length of 150 iterations. Using an epoch length of 150 results in a Life Tax of.

Taxnfe = 0.00461.

Experiments conducted for this study found that using a bid tax less than the inverse 

o f the number of classifiers in the population provided good results. Since the population
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contains 1 ,0 0 0  classifiers the bid tax was tested below 0 .0 1 , the best results were found to 

occur using a bid tax o f 0.003. The tax parameters are summarized in Table 5.3.

Table 5.3 Tax Parameters

Life Tax (also called Head Tax) Taxlife 0.0046
Bid Tax Taxbid 0.003

5.2.5 Genetic Algorithm & Triggered Cover Detector Operator 
Parameters

Chapter 3, Section 3.2 provided the structure and process followed in the Genetic 

Algorithm module, while Section 3.1.3 described the Triggered Cover Detector Operator 

(TCDO). In a classifier system, many iterations occur whereby the classifier system 

performs interactions with the environment between each application o f the genetic 

algorithm; the number of iterations between the genetic algorithm application is termed 

an epoch. The epoch is necessary to create a ranking among the classifiers. The G A ’s 

power depends upon the relationship of the classifier strengths corresponding to the 

steady-state strength ranking. That is, if a population of classifiers was permitted to run 

without a GA ever being applied, and without a TCDO, eventually a near steady-state 

condition would result where the strengths would represent the relative merit o f each 

classifier in relation to the rest of the population. The other extreme would be to apply 

the GA on every iteration, in this case the classifier system would not have the ability to 

rank the population, thus the strengths would be meaningless. The GA in this scenario 

would be performing random search. So the goal then is to determine an epoch length 

providing enough experience to create a valid relative ranking between the classifiers, 

while not making the epoch length so long as to waste computational resources and 

therefore not fully exploit the full learning capacity o f  the genetic algorithm.

Classifier system research has not provided a quantitative method for setting the 

epoch length, however, as with many classifier system parameters a wide range of epoch 

lengths will afford satisfactory results. The classifier system literature and 

experimentation carried out for this study resulted in a suite of parameters for expedient
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learning. Table 5.4 displays the genetic algorithm and triggered cover detector operator 

parameters.

Table 5.4 Genetic Algorithm & Triggered Cover Detector Operator Parameters

Epoch length (GA period) 150 cycles
Proportion of Population Selected to 
Breed per Epoch

1 0 %

Probability of Mutation 0 . 1%
Probability of Crossover 1 0 0 %
Crowding Factor 1 0 0

Crowding Sub-population 150

5.3 Learning Suite
The educational process consists of a progression through a learning suite of designs 

to be optimized. The learning suite contains a range o f designs covering the spectrum 

from simple one design variable sizing optimization to complex multiple design variable 

sizing optimization designs. The educational process defines the minimum design space 

scope for which SPHINcsX is effective. As the educational process continues SPHINcsX 

may reach a point where further classes of designs cannot be handled. If such a situation 

occurs it establishes the scope o f applicability. However, if such a point is not reached, 

the scope may be broader than the learning suite’s scope. This property provides the 

justification for a learning suite consisting only of sizing problems, for empirical results 

showed that SPHINcsX can not distinguish between size and shape optimization 

problems, thus if a broad range of size optimization problems are used to teach 

SPHINcsX then the learned SPHINcsX should also be able to optimize shape designs.

The learning suite is broken down into clusters', clusters are groups o f similar 

problems, that have a common unique characteristic. The clusters composing the 

learning suite are named as follows ranging from simple to more complex:

• Tension Rod,

• Pressure Vessel,
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•  Torsion Solid Rod,

• Cantilever Beam,

• Torsion Elliptical Solid Rod,

• Torsion Elliptical Hollow Rod.

The following sections describe each o f the clusters and formalize the optimization 

problems SPHINcsX will use for its learning suite.

5.3.1 Tension Rod
The Tension Rod, labeled 77?, provides a good basic cluster o f  problems to 

commence with because it possesses the following characteristics:

• sizing problem,

•  closed form solution (in many incarnations),

• known optimal solution,

which provide for simple design analysis and optimization performance evaluation.

The simplest incarnation o f the tension rod design, labeled 77?/, is shown in Figure 

5.1. In this case only one design variable exists, the radius of the tension rod, which is

constant through the length of the rod. In this case, the stress (c) is also constant

throughout the length and has the value of,

Force
Area  ^

where,

Area = k R 2 .

Since the only design variable is R, the problem is reduced to,

(5.2)

therefore, the optimal radius may be calculated from,
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SPHINcsX does not know that such an explicit representation exists for this problem. 

Since the stress is uniform throughout the tension rod, the control point, straddle point 

and interior point stresses (see Chapter 4, Section 4.3) are all equal. As shown in 

Equation 5.2 the tension rod problem exposes SPHINcsX to a situation where the stress is 

an inverse squared function o f the design variable.

Tension Rod

Table 5.5 Tension Rod Problem Parameters

Name Label Value
Force F 785 Newtons

Length L 0.1 meters
Maximum Allowable 

von Mises Stress
O0 10*106 Pascals

Convergence Limit e 0.02
Element Length EL 0.002 meters

Mass M TtR2

Table 5.6 Tension Rod Design Variables

Name Label
Minimum Initial Value Range for Initial 

Value Upper
Limit
(m)

Lower
Limit
(m)

Label Value (m) Label Value
(m)

Radius R D m in
init 0.015 A R  ,nut

0.015 0.030 0.001
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Table 5.7 Tension Rod Stress Characteristics

Stress Point Ox Oy Oz von Mises Stress
Control Point ‘R’ F 0 0 F

(Rod Exterior) k R 2 kR 2
Interior point F 0 0 F

k R 2 7iR 2
Prominent F 0 0 F

straddle point kR 2 JiR 2

To assist SPHINcsX in learning to handle general problems and not just learn to rote 

the designs used during the educational process, randomness is added to the initial design 

configuration. The educational process consists of hundreds of optimizations. To make 

each design optimization unique, a range of possible initial design variable values is 

implemented. To illustrate, in TRI the initial radius definition includes a random 

constituent,

/ C "  + A f l * [ W ( 0 , l ) ]

where,
rand(0,1) A random number between 0 and 1 inclusive.
AR The maximum of the allowable range.

Therefore, if the random number is 0, R. will be the initial radius, /?.m*n , while if themit tnit

random number is 1 then the initial radius is /?.m.*n + AR . For any other random numbermit J

between 0  and 1 the initial value of the radius will be,

/?m‘n < R. . < R.m.in + A R . (5.4)
m it m i t  mit

The general case for the tension rod problem, labeled TRg, is defined in Figure 5.2. 

The radius is defined by it control points, and a smooth transition occurs between the n 

control points. For ease o f computation the length is defined to be great enough so that at 

each control point the stresses (straddle, interior & control) are defined by,
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a  =
i

R 2 ’
(5.5)

in effect, ignoring stress concentration affects. In TRg the initial value o f n  is variable, 

thus TRg exposes SPHINcsX to a multiple design variable situation and situations where 

SPHINcsX’s multiple control point modification capability may be applied beneficially. 

When n  = 1 TRg degrades to TRI.

F

General Tension Rod

R n - 1

Table 5.8 General Tension Rod Problem Parameters

Name Label Value
Force F 785 Newtons

Length L Long enough to 
minimize stress 
concentrations

Maximum Allowable 
von Mises Stress

So 10*106 Pascals

Convergence Limit £ 0.02
Element Length EL 0.002 meters

Mass M jt*(R12 + R22+ ... +Rn2)

99

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

Table 5.9 General Tension Rod Design Variables

Name Label
Minimum initial Value Range for initial 

Value Upper Lower
Label Value (m) Label Value

(m)
Limit
(m)

Limit
(m)

Radius
1 R , 7?/.mitnmit

0.015 0.015 0.030 0.001

Radius
2 r 2 mit

0.015 ARi.mit
0.015 0.030 0.001

... . •» • ■ • ... ■ • ■ ... ... ...
Radius

N Rn iv  mit
0.015 0.015 0.030 0.001

Table 5.10 General Tension Rod Stress Characteristics

Stress Point (J* Ov a* von Mises Stress
Control Point ‘Ri’ (Rod F 0 0 F
Exterior for Radius /) n R i2 n R i2

Interior point F 0 0 F
n R i2 n R i2

Prominent straddle F 0 0 F
point n R i2 n R i2

5.3.2 Pressure Vessel
The Pressure Vessel, P  V, provides the second cluster of designs and Figure 5.3 

defines the problem. Only the inner radius is a design variable. The pressure vessel 

possesses the following properties:

•  sizing problem,

• closed form solution,

•  known optimal solution,

• von Mises stress a complex function of the design variable,

•  the pressure vessel is very long, and thus the longitudinal stresses at the point 
of interest is zero.
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Figure 5.3 Pressure Vessel: Quarter Model

Table 5.11 Pressure Vessel Problem Parameters

Name Label Value
Internal pressure Pi 0 Pascals
External pressure Po 400,000 Pascals

Maximum Allowable 
von Mises Stress

Go 1*10® Pascals

Convergence Limit e 0.02
Element Length EL 0.005 meters

Mass M 7t*(b2 -  a2)
External Radius (fixed) b 0.25
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Table 5.12 Pressure Vessel Design Variables

Name Label
Minimum Initial Value Range for Initial 

Value Upper
Limit
(m)

Lower
Limit
(m)

Label Value (m) Label Value
(m)

Inner
radius

a ^ m i n
init

0.01 A  a.mit
0.23 0.24 0.01

Table 5.13 Pressure Vessel Stress Characteristics

o t Or <J| C^von
Control 
point & 

straddle
- i p  * 2

0 u2 2b - a

0 0 Ot

Interior
point

( 2  > 9 a
b 2 1 + ----------- 7

I  ( b - E L , ) 2 ,

( „ 2  >
b 2 1 - -----------

I  ( b - E L ) 2 ,

0 - J a f - a ta r + a j

° b 2 - a 2 ° b 2 - a 2

5.3.3 Torsion Solid Rod
The Torsion Solid Rod, labeled TSR, provides the third cluster o f designs. The 

torsion solid rod possesses the following features:

• sizing problem,

• closed form solution,

•  known optimal solution,

•  von Mises stress an inverse cubed function o f the design variable.

Figure 5.4 defines the torsion solid rod design optimization problem, where the torsion 

solid rod always remains circular. The main educational characteristic is SPHINcsX will 

be taught to handle problems where the von Mises stress varies as an inverse cubed 

function of the design variable. For the circular torsion solid rod the shear stress, x, is a 

function of the torque, T, radius, r, and the polar moment of inertia, J , as calculated by the 

equation;
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T * r
X  = --------- .

J

Where for a solid round section,

j _ n,*di V
32 "  2 ’

and therefore,

2

Figure 5.4 Torsion Solid Rod

Table 5.14 Torsion Solid Rod Problem Parameters

Name Label Value
Torque T 1.0 Newton-Meter
Length L 0.1 meters

Maximum Allowable 
von Mises Stress

Cfo 10 *106 Pascals

Convergence Limit e 0.02
Element Length EL 0.002 meters

Mass M TtR2
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Table 5.15 Torsion Solid Rod Design Variables

Name Label
Minimum Initial Value Range for Initial 

Value Upper
Limit
(m)

Lower
Limit
(m)

Label Value (m) Label Value
(m)

Radius R Dmin
■‘Mnit

0.015 A R init
0.015 0.045 0.001

Table 5.16 Torsion Solid Rod Stress Characteristics

Stress Point T von Mises Stress
Control Point ‘R’ I T

(Rod Exterior) 7lR 3
2 T ( R - E L )

Interior point
n  R 4

Prominent I T &straddle point K R 3

5.3.4 Cantilever Beam
The Cantilever Beam, CB,  provides the fourth cluster of designs. The main 

educational difference provided is the bending load the cantilever beam is exposed to, 

other properties o f the CB are:

• straddle point stresses are different from the control point stress,

•  interior point stress is different from the control point stress,

• stress varies along the boundary,

•  location o f the maximum stress varies as the design variable varies.

Figure 5.5 shows the cantilever beam design.
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Length --------------- ►

Figure 5.5 Cantilever Beam

The problem, as posed has one design variable, eH, (wH is fixed); therefore the goal 

is then to size eHas  small as possible without violating the maximum allowable von 

Mises stress on the exterior boundary (or internally). The boundaries that are effected by 

changes in eH  do not change shape, however the stress is not constant along the 

boundaries as was the case in the previous clusters. The largest stress always occurs on 

the top and bottom boundaries. Due to symmetry only the top boundary will be 

considered. The tensile stress along the top boundary of a cantilever beam loaded by a 

force, P,  as shown in Figure 5.5 is given by Equation 5.7.

Where y is the distance from the center line to the top boundary at the corresponding 

value o f x, L  is the length of the beam and I  is the moment of inertia. Assuming a unit 

thickness for the cantilever beam, the moment o f inertia is,

(5.8)

Substituting Equation 5.8 into Equation 5.7 yields,

L - x

v“
(5.9)

The value of y can be written as a function o f x  as,
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w H  x ( w H - e H ) 
2 L \  2 )

(5 .1 0 )

Replacing y  in Equation 5.9 yields,

u  x  2
L - x

wH  _  x ( wH  -  eH  
2 L {  2

(5 .11)

Figure 5.6 displays a plot o f this equation showing stress as a function of * and the 

free-end height, eH.  As Figure 5.6 reveals the stress along the boundary is non­

monotonic and the maximum value occurs at different x  values depending on the free-end

height.

Stress 
7e+07

6e+07

4e+07

1e+07

Figure 5.6
0.02— 0.04  

Cantilever Beam Stress Characteristics

The maximum stress occurs when the derivative o f Equation 5.11 is zero. Differentiating 

Equation 5.11 yields.

d° x ^  P *  ( L - x ) j w H - e H )  3 ,
dx 2 L w H _x_(  w H  -  eH  

2 L{  2
3 2 wH x w H - e H

2 L I 2

.(5 .1 2 )

Setting the derivative to zero and solving for x  yields the location where the maximum 

stress occurs,
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<513>

The value for x„utx is only between 0 and L  for eH  < Vz wH. For values of eH  > Vz wH, 

the maximum stress occurs at x  = 0. Substituting the value of x„ULX from Equation 5.13 

into Equation 5.10 for y  yields the y  location for the maximum stress, this simplifies to,

Substituting the value o f x„uix from Equation 5.13 into Equation 5.11 yields after some 

simplification, the maximum stress for eH<Vz  wH,

&,5>

The maximum stress for eH > Vz w H  is,

a!lnax(e//) = - * ^ f . (5.16)
2  wH

The cantilever beam problem now has an interesting boundary representation. The 

boundary representation may be thought o f as a straight line on the top front edge in 

Figure 5.6. However, the control point moves along the boundary so as to coincide with 

the location of the maximum stress. Therefore SPHINcsX must learn under the 

conditions of this non-conventional boundary representation.

Table 5.17, Table 5.18, and Table 5.19 define the cantilever beam design 

optimization problem. Table 5.19 includes references to Algorithms 5.4, 5.5 and 5.6.
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Table 5.17 Cantilever Beam Problem Parameters

Name Label Value
Force/thickness P/t 10,000 Newtons/meter

Length L 0.04 meters
Height at Wall wH 0.020 meters

Maximum Allowable 
von Mises Stress

d0 10*106 Pascals

Convergence Limit e 0.02
Element Length EL 0.001 meters

Mass M l/2*(wH + eH) * L

Table 5.18 Cantilever Beam Design Variables

Name Label
Minimum Initial Value Range for Initial 

Value Upper
Limit
(m)

Lower
Limit
(m)

Label Value (m) Label Value
(m)

Free
End

Height

e H rrinin
e tlin it

0.005 A eH.mit
0.005 0.020 0.0005

Table 5.19 Cantilever Beam Stress Characteristics

Stress Point dx X dvon
Control Point ‘eH’ 

(Free End)
— * ------L*P------  j- ^ < wH_
2 (w H - e H ) * e H  2

6 *L*P for e H > wH 
w H 2 2

0 dx

Interior point 3 * L * P A e H  EL) for 
2 ( w H - e H ) * e H 2

eH<^-

6 * ' - * / ( l  2 £ i )fo r  
wl{ 2

X from 
Algorith 

m 5.4

Va; + 3 t :

Straddle point 1 G*pl from Algorithm 5.5 0 dx
Straddle point 2 O sp~ from Algorithm 5.6 0 dx
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Algorithm 5.4: T for Interior Point

IF - EL > 0

THEN T = —* ^  ^  *
2 O'™*)1 

ELSE T  = 4 *  —

1 +  -
EL

2 * y

Algorithm 5.5: Gx for Straddle Point 1

IF xmax - EL > 0
THEN xspi = xmax - EL 
ELSE xspi = 0

. .  _  w H  xsp\ l w H - e H \
II- y s p \ - ^ T - — [ 2 I

H I  f r sP * — 3  *  P *  ^

‘  " 2 M !

Algorithm 5.6: Gx for Straddle Point 2
I. IF Xmax *̂“ EL < L

THEN Xsp2 = Xmax EL
ELSE XSp2 “  L

II. IIri w H x sp2 f\%*H — e H \  
2 L \ 2 }

III. o f 2 = 3  * p  * ^  xsp2
2 ( V

5.3.5 Torsion Elliptical Solid Rod
The Torsion Elliptical Solid Rod, TESR, provides the fifth cluster of designs. The 

TESR extends the properties of the TSR by:

•  defining the exterior with two design variables.

Figure 5.7 shows the torsion elliptical solid rod design, while Table 5.20 defines the 

problem parameters. Table 5.21 defines the design variables and Table 5.22 defines the 

stress characteristics (Roark & Young [1982]) for the torsion elliptical solid rod design 

optimization problem. The stress calculations for the prominent straddle points and the
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interior points are only approximate, exposing SPHINcsX to a situation where 

optimization must be performed with slightly inaccurate stress information.

Figure 5.7 Torsion Elliptical Solid Rod

Table 5.20 Torsion Elliptical Solid Rod Problem Parameters

Name Label Value
Torque T 1.0 Newton-Meter
Length L 0.1 meters

Maximum Allowable 
von Mises Stress

O0 10 * 106 Pascals

Convergence Limit e 0.04
Element Length EL 0.0005 meters

Mass M Tiab

Table 5.21 Torsion Elliptical Solid Rod Design Variables

Name Label
Minimum Initial Value Range for Initial 

Value Upper
Limit
(m)

Lower
Limit
(m)

Label Value (m) Label Value
(m)

Major
Axis

a ruin
init

0.010
“ ini,

0.005 0.015 0.001

Minor
Axis

b Amax
^init

0.007
A

0.005 0.015 0.001
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Table 5.22 Torsion Elliptical Solid Rod Stress Characteristics

Stress Point

7l ba

71 ab

von Mises Stress
Control Point ‘a’ 

(End of major
 axis)_____

interior point

Prominent 
straddle point

Control point ‘b’ 
(End of minor 

axis) 
Interior point

Prominent 
straddle point

Gianni-3X'

a - E L (5avon

EL

- n [ a  + b]
( - a  b  \  
1° von u von J

c bv  von ’

b ~ ELCtb
b von

EL ( „ b  - a  \  
1° von °  von J
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5.3.6 Torsion Elliptical Hollow Rod
The Torsion Elliptical Hollow Rod, TEHR, provides the sixth cluster of designs. 

The TEHR extends the TESR by:

•  defining the interior and exterior boundaries with two design variables each,

•  creating a design where local optima exist.

Figure 5.8 shows the torsion elliptical hollow rod design, while Table 5.23 defines 

the problem parameters, Table 5.24 defines the design variables and Table 5.25 defines 

the stress characteristics (Roark & Young [1982]) for the torsion elliptical hollow rod 

design optimization problem. Again the stress calculations for the prominent straddle 

points and the interior points are only approximate, exposing SPHINcsX to a situation 

where optimization must be performed with slightly incorrect stress information.

<2 c>

6—2a —*

Figure 5.8 Torsion Elliptical Hollow Rod

112

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

Table 5.23 Torsion Elliptical Hollow Rod Problem Parameters

Name Label Value
Torque T 1.0 Newton-Meter
Length L 0.1 meters

Maximum Allowable 
von Mises Stress

Co 1*106 Pascals

Convergence Limit E 0.05
Element Length EL 0.0005 meters

Mass M 7i*(a*b - c*d)

Table 5.24 Torsion Elliptical Hollow Rod Design Variables

Name Label
Minimum Initial Value Range for Initial 

Value Upper
Limit
(m)

Lower
Limit
(m)

Label Value (m) Label Value
(m)

Exterior
Major
Axis

a ^ m i n
init 0.020 A  a. ■init

0.005 0.030 0.015

Exterior
Minor
Axis

b /•.max
" n i t 0.016

^ i n i ,
0.005 0.030 0.015

Interior
Major
Axis

c r min 
^  init 0.007

A c i„i,
0.005 0.015 0.001

Interior
Minor
Axis

d ^ym ax
Minit 0.005 Ad. .init

0.005 0.015 0.001
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Table 5.25 Torsion Elliptical Hollow Rod Stress Characteristicsf

Stress Point 
Control Point ‘a*

Interior
point

Prominent
straddle

point

Control Point ‘b’

Interior
point

Prominent
straddle

point

Control Point ‘c’

Interior
point

Prominent
straddle

point

Control Point ‘d’

Interior
point

Prominent 
straddle 

point

c  a
t  Note: IF -  > -  THEN q =  

a  b  a

von Mises Stress

a ~ E L d avon

- K a b

b ~ E L a bvon

3 4
nab  ( l - o  )

d -  E L - d  
d  von

ELSE q =  -
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5.4 Summary
This chapter detailed the learning algorithm used by the Shape optimization via 

Hypothesizing Inductive classifier system compleX (SPHINcsX). After which the 

learning suite of designs used to teach SPHINcsX shape optimization was presented. 

Chapter 3, Chapter 4 and this chapter fully define the classifier system which is employed 

by SPHINcsX. Table 5.26 summarizes the classifier system parameters used by 

SPHINcsX. Table 5.27 summarizes attributes of SPHINcsX, including much o f the 

classifier system’s structure.

Table 5.26 Compendium o f  SPHINcsX Parameters

Reward Coefficient 7.5
Bid Coefficient 0.1

Bid Sigma 0.15
Bid Coefficient 1 0.1
Bid Coefficient 2 0.0833

Effective Bid Coefficient 1 0.1
Effective Bid Coefficient 2 0.0833

Head Tax (also called Life Tax) 0.0028
Bid Tax 0.01

Epoch length (GA period) 250 cycles
Proportion of Population Selected to Breed per Epoch 10%

Probability of Mutation 0.1%
Probability of Crossover 100%

Crowding Factor 100
Crowding Sub-population 150
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Table 5.27 Compendium of SPHINcsX Attributes

CS approach Michigan Approach
Behavior classification Stimulus-Response (no bucket brigade)
Environment Structural Shape optimization with stress constraints
Selection Fitness proportionate reproduction
Pairing of parents Panmictic
Crossover Single point crossover
Initial population Tabula rasa
Population size Static
Replacement & Crowding Steady state genetic algorithm
Expected learning cycles < 100,000
Failure criterion von Mises
Detector range > 0 and < 2 * o „
Detector message format 18 bits long; consisting of 3, 6 bit long messages
Part 1 of message Prominent straddle stress
Part 2 of message Control point stress
Part 3 of message Interior point stress
Stress range 0 to 2 * o„ and larger stresses mapped to (2* o„)
Specificity Dependent on # location
User input Maximum stress Initial design Element length
Direction of control Determined by boundary representation or surface point modification normal vector
Antecedent length 18
Alphabet of antecedent (0.1.#)
Number of conditions 3
Condition 1 length 6
Condition 1 message Match prominent straddle point's von Mises stress
Condition 2 length 6
Condition 2 message Match control point's von Mises stress
Condition 3 length 6
Condition 3 message Match interior point's von Mises stress
Consequent Alphabet (0.1)
Consequent Length 6
Consequent range 111111 ; Largest positive relative magnitude 

000000: Largest negative relative magnitude
Positive Direction away from surface (i.e. along positive surface normal or closest possible 

via constraint)
Negative Direction into component (i.e. along negative surface normal or closest possible via 

constraint)
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Chapter

6

Learning Regime for SPHINcsX

This chapter details the mentoring process used to teach SPHINcsX. This process 

consists o f applying the learning suite to SPHINcsX in learning mode. This 

combination is termed the learning regime. The chapter tracks SPHINcsX’s learning 

performance from a tabula rasa population to a learned state. Since there is no prior 

precedent to base performance on, various performance metrics monitor the progress so 

that criteria for considering a population learned will become self evident.

6.1 Learning Initialization
The SPHINcsX algorithm, as shown in Chapter 5, Algorithm 5.1, begins with the 

initialization of the classifier system. The classifier system initialization consists of the 

following:

•  Set initial population size & populace,

•  Setup Punishment/Reward,

•  Set Auction parameters,

•  Set taxes,

•  Set Genetic Algorithm & Triggered Cover Detector Operator parameters,

•  Set learning iteration, n, equal to 0,

•  Set epoch, £, equal to 0.

The SPHINcsX algorithm prescribes all the classifier system initializations except for an 

actual instantiation of the population o f classifiers. The initial populace is constructed as 

described in Chapter 5, Algorithm 5.2. The Tabula Rasa Population used in this work is 

shown in Appendix A.
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Next the initialization o f the design to be optimized occurs. A  list of the necessary 

design initializations consists of the following:

• Initial design model,

• Boundary representation definition,

• Global element length,

• Upper & lower limits on dimensions (if any),

• Maximum allowable von Mises stress,

• Set optimization problem iteration, /, equal to 0.

The problems in the learning suite, as defined in Chapter 5, Section 3 and the subsequent 

subsections, include all o f these necessary initializations.

The learning regime selects an initial design stochastically from a pool in the 

learning suite. That is, the learning regime may include provisions so that the selection 

occurs from a pool which is a subset of the entire learning suite. The selected design is 

then used in the SPHINcsX algorithm where an attempted optimization proceeds. After 

the attempted optimization, the process continues with a stochastic selection o f another 

initial design. The optimization is stated as attempted  because there is a maximum set on 

the number of optimization iterations that will be allowed before SPHINcsX terminates 

the optimization process and moves on to another problem. This occurs to prevent 

SPHINcsX from getting stuck on one particular case.

Initial Design Selection Scheme
The SPHINcsX algorithm does not include the details of selecting the initial designs

used for learning. This is the case because o f SPHINcsX’s flexibility in handling many 

possible problem suites and still learning efficiently. The initial design selection scheme 

described here is meant to be but one o f many plausible suites.

One of the aspects considered when determining the initial design selection scheme 

was the need to monitor learning performance throughout the process. To this end, each 

of the clusters is introduced separately, then after all the clusters have been introduced the
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initial design selection allows for any initial design to be chosen. Algorithm 6 .1 lists the 

sequence for selecting initial designs.

Algorithm 6.1; Initial Design Selection Scheme_____________________________

I. For learning iteration 1 through t/
1. Select the Tension Rod  cluster
2. Set the number o f design variables to 5
3. Continue to Design Variable Initial Value(s) Procedure (defined below)

II. For learning iteration t/+ l through tn
1. Select the Pressure Vessel cluster
2 . Continue to Design Variable Initial Value(s) Procedure (defined below)

III. For learning iteration t/i+1 through tm
1. Select the Torsion Solid Rod  cluster
2 . Continue to Design Variable Initial Value(s) Procedure (defined below)

IV. For learning iteration tm+] through t/v
1. Select the Cantilever Beam  cluster
2 . Continue to Design Variable Initial Value(s) Procedure (defined below)

V. For learning iteration t/v+I through tv
1. Select the Torsion Elliptical Solid Rod  cluster
2 . Continue to Design Variable Initial Value(s) Procedure (defined below)

VI. For learning iteration tv+1 through tVi
1 . Select the Torsion Elliptical Hollow Rod  cluster
2 . Continue to Design Variable Initial Value(s) Procedure

VII. For learning iteration greater than tvi+1
1. Randomly select one of the clusters
2 . Continue to Design Variable Initial Value(s) Procedure

Design Variable Initial Value(s) Procedure

For each design variable
1. Randomly select a number between 0 & 1 inclusive
2 . Calculate the initial value of the design variable (DV):

DV. . = D V m.]n +ADV*rai)d(0.l)

6.2 Implementation of Learning Regime
With a method now established for initializing the classifier system and for 

initializing the designs in the learning suite, the learning regime may be implemented.
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The extensive computational requirements mandate an automated software 

implementation.

SPHINcsX’s algorithm, in conjunction with the learning suite, is implemented in the 

SPHINcsX software system. Because o f the multi-faceted nature of SPHINcsX, the 

software implementation consists of many sub-systems including:

•  Classifier System,

• Genetic Algorithm,

•  Analysis module for closed-form solvable designs,

•  Open Link interface to I-DEAS™ for finite element based analysis module,

•  Microsoft (MS) Windows graphical user interface front-end,

•  Graphics package,

•  Graphical classifier viewer.

During SPHINcsX’s development, many problems, both shaping and sizing, were 

employed to test its learning capabilities (Richards [1992]). One result was that 

generalized learning could be achieved via either sizing or shaping problems as long as 

enough different stress patterns were presented. The learning regime utilizes only 

problems solvable using closed-formed solutions. The I-DEAS™ analysis module is 

employed in application mode to test the learned classifier system on more complex 

geometries.

The learning phase is computationally expensive, requiring many thousands of cycles 

before valuable learning is expected to be expressed (see Chapter 3, Section 3.6.1). This 

should be expected by such a general learning technique which is not given domain 

specific information. SPHINcsX is also handicapped by starting with a random set of 

classifiers. Note, however, the incredible overall savings in computational resources if 

SPHINcsX can be mentored to optimize a broad scope of problems (virtually all requiring 

general analysis techniques like the finite element or boundary element method), utilizing 

only problems solvable in closed form. It is easy to appreciate the immense savings in 

resources when a learning iteration only requires the solution o f a few equations versus
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that of performing even a modest finite-element model composed of say 1 0 0  nodes. 

Recall, that after completing learning, the use of SPHINcsX on design optimization 

problems should be no more computationally expensive than other optimization schemes 

(if any others are available).

6.3 Learning Performance
The progress of the learning regime is evaluated by monitoring the performance 

metrics, P I, P2, P3 introduced in Chapter 3, Section 3.6. Recall that P I  is the ratio of the 

number of correct responses to the total number of responses, while P2 is the ratio of 

correct responses during the last epoch to the number of iterations in the epoch, finally P3 

is the number o f iterations to reach the optimum. Unfortunately, the field of classifier 

systems has not developed mechanisms that utilize the performance metrics to declare 

when the classifier system has learned; the metrics must be monitored for signs or 

indicators of learning, from which judgments are made. The performance metrics, P I 

and P2 should show asymptotic improvement with increasing learning iterations, and thus 

reveal not only the learning progress but also a point where the diminishing returns are so 

small that continued learning is not justified. The genetic algorithm’s purpose is 

exploration, so the populace after the GA application will most likely be worse because 

some new members will be provided with artificially high strengths, than the pre-GA 

populace. Therefore the asymptotic improvements in P I and P2 may not be strictly 

monotonic.

The learning iterations, (ti, tii, tm, tJV, tv, tvi), when new design clusters are introduced 

in Algorithm 6 .1 can not be set a priori, but will be determined via the monitoring o f the 

performance metrics. As mentioned above, each introduction of a new design cluster is 

expected to cause an initial decrease in all the performance metrics.

To set a foundation on performance, the tabula rasa population is used to optimize 

the simplest tension rod, TRI (as defined in Chapter 5, Section 5.3.1), with the initial 

radius set to + A /? /jnj( = 0.03 meters (as defined in Table 5.6). A plot o f the
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tension rod’s mass and total normalized stress error (TNSE) vs. number of iterations is 

shown in Figure 6 .1. As Figure 6 .1 shows, the TNSE never gets close to the optimum, 

which must be less than e, which is equal to 0.02 (as set in Table 5.5). The undulations in 

the mass demonstrate that the modifications are essentially random. An upper limit of 0.3 

meters is placed on the radius, which bounds the mass and explains why the mass peaks 

are all equal. The lower bound on performance is randomness.

Mass
TNSE

■c<u
N

ro
E
oZ
«t/i
<05
HI
C O
zH 0.1

0.01
0 20 40 8060 100

Optimization Iteration 

Figure 6.1 Performance o f  Initial Population

Since all the tabula rasa population’s members have an initial strength o f 10, a 

strength histogram o f the initial population consists of a single bar, as shown in Figure 

6.2. The width of the bar is between the strengths o f 9 to 11, the histogram groups the 

strengths into sets with the ranges;

0-1, 1-3, 3-5, 5-7 ,7-9 ,9-11 , 11-13, 13-15, 15-17, 17-19, 19-20, 

as described in Chapter 3, Section 3.6.
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Strength

Figure 6.2 Initial Population Strength Histogram

The default hierarchy chart for the initial population, shown in Figure 6.3, appears 

cluttered because all strengths are equal to 10. However, the chart depicts the range of 

classifier specificities in the initial population.
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Figure 6.3 Initial Population Default Hierarchies

6.3.1 Evolution via Tension Rod Cluster (0< t < 1500)
Learning commences by selecting a design from the general tension rod cluster, TRg, 

using 5 different radii. The 5 different radii are stochastically set as described in Chapter 

5, Section 5 .3 .1. The performance above used the simpler case with just l radius. For

123

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

consistency the learning is started again using the tabula rasa population and each design 

will be created with 5 different radii.

To determine when the productivity o f mentoring via the tension rod designs has 

decreased to a level where the next cluster should be introduced, the performance metrics 

P I, P2, and P3 are monitored. The information provided by the performance metrics 

must be examined in tandem to assess when learning has occurred to the level where 

continued learning with the same cluster o f designs is inefficient. Figure 6.4 displays the 

performance metric, P I, for learning iteration 0 through 1500.

100

0.

800 1000 1200 1400 16000 200 400 600
Learning Iteration

Figure 6.4 Tension Rod Cluster Correct Response Rate

Figure 6.5 displays the performance metric, P2, for learning iterations 0  through 

1500. The bars represent the percentage of correct answers during the epoch, (an epoch is 

150 learning iterations). Note that if a random decision was made on which direction to 

move a design point, P2 would be expected to approach 50%. Observe that P2 is near 

50% during the first epoch, an expected result considering the tabula rasa population. 

After six epochs, P2 has reached nearly a 80% correct response rate. P2 rate is not 

expected to ever reach 1 0 0 % because the GA is applied every epoch and introduces new 

classifiers, some of which will invariably make incorrect decisions.
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Figure 6.5 Tension Rod Cluster Correct Response Rate per Epoch

Figure 6 .6  displays the performance metric, P3, for learning iteration 0 through 

1500. Recall that the maximum allowable number of iterations for performing the 

optimization is set to 100. Because o f this, and the fact that designs were selected with 

stochastically varied initial design variables, the graph should be read by observing the 

density of successful optimizations. Figure 6 .6  shows that a successful optimization 

could not be performed until almost 400 learning iterations occurred. In addition, it took 

SPHINcsX until over 800 learning iterations before it had learned enough so that it could 

consistently optimize the tension rod in less than 100 iterations. The variation in the 

number of iterations to optimize a design is to be expected because each design has 

different initial values and because performance suffers (probabilistically) initially after 

the application of the genetic algorithm.
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Figure 6 .6  Iterations to Optimum fo r  Tension Rod Designs

The number o f learning iterations required to reach an evolutionary stage where the 

productivity o f mentoring via the tension rod cluster plateaued is not known a priori. 

Since the learning process involves stochastic operations, many simulations were run and 

the evolution was monitored via the performance metrics to determine the number of 

learning iterations to perform on the tension rod cluster before transitioning to the next 

cluster. The figures above show the evolution for the simulation used to create the 

population which was then used for further learning.

6.3.2 Evolution at 5,000 Learning Iterations: 33 Epochs
After 5,000 learning iterations, the initial design selection scheme has progressed 

through the TRg cluster, PV cluster, TSR cluster, CB cluster, TESR cluster, and TEHR 

cluster. Each of the clusters went through an evolution similar to that described for the 

torsion rod cluster. Figure 6.7 displays the performance metrics PI through the entire 

5,000 learning iterations, while Figure 6 .8  displays P2 over the same 5,000 learning 

iterations. The vertical lines in both figures represent the introduction new clusters. The 

number of learning iterations for each cluster was determined by monitoring the 

performance metrics. From this monitoring the tension rod cluster was used for learning 

between iteration 0 through 1,500 as discussed above, next the pressure vessel cluster was 

used until iteration 2,000. Next the torsion rod cluster was used until iteration 2,800, 

followed by the cantilever beam until iteration 3,500. The torsion elliptical solid rod was 

used until iteration 4,400, after which the torsion elliptical hollow rod concluded until
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iteration 5,000. Observations regarding the learning process as it progressed through the 

clusters are provided below.
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Figure 6.7 Correct Response Rate through 5,000 Iterations

■too ------------------------------- ---------- ---------------------------------------------------------------

60 -   r—T ”  ...............................................   I- ...................................  “ ................ ~ ........................

CM0.
40 '

20  -

0 — — — — ^ — — — — — — 1-11— ^ — — — U _ I_ J —  11— — — —  — — —
0 5 10 15 20 25 30

Epoch

Figure 6 .8  Correct Response Rate per Epoch through 33 Epochs

Figure 6.9 displays the performance metric P3 for the tension rod, pressure vessel, 

torsion solid rod, cantilever beam, torsion elliptical solid rod and torsion elliptical hollow 

rod designs. Recall that the maximum allowable number of iterations for performing the 

optimization is set to 100. Again, the variation in the number of iterations to optimize a
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design is to be expected because each design has different initial values and performance 

(probabilistically) suffers initially after the application of the genetic algorithm.

100
Tension Rod 

Pressure Vessel 
Torsion Circular 
Cantilever Beam 
Torsion Elliptical 

Tosion Hollow

P3
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Learning Iteration

Figure 6.9 Iterations to Optimum fo r  Learning Suite Designs

The second design used in the mentoring process, the pressure vessel, did not appear 

to present much o f a challenge. For even initially, SPHINcsX consistently optimized 

various initial configurations. Therefore after only 500 learning iterations it appears 

appropriate to move on to another design.

The third cluster of designs, the torsion rod. provided a greater challenge. By 

watching the learning, what appeared to occur was that general rules that worked 

previously for the tension rod and pressure vessel clusters were too general and were not 

appropriate for the new stress states generated in the torsion rod designs. SPHINcsX 

eventually culled the inappropriate general classifiers while leaving appropriate general 

classifiers as well as appropriate specific ones.

The learning prepared SPHINcsX well for the cantilever beam cluster. The problem 

was always optimized within the 100 iteration limit, except for one case. Even after the 

conspicuous failure from learning iteration 3,038 to 3,138, SPHINcsX regained its stride,
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optimizing the rest o f the cantilever beam problems in under 20 iterations each. Learning 

ceased for this design cluster after 700 iterations.

The torsion elliptical solid rod cluster provided SPHINcsX with a multiple control 

point environment where dimension changes at one design point affected the stress at the 

other design point. Previous experience proved helpful, as the drop in the performance 

metric P2 reveals, dropping to a correct response rate of almost 60%. SPHINcsX’s 

overall performance improved during the exposure to the cluster with P2 rising back into 

the 70% correct range by 4,400 learning iterations. With the rising performance 

SPHINcsX became able to optimize the final set of designs in under 100 iterations.

SPHINcsX dealt with the torsion elliptical hollow rod cluster with remarkable 

adeptness. Even though each modification at any o f the four design points affected the 

stresses at all the others, SPHINcsX optimized every one of the designs presented to it. 

Because o f this, and because there was no significant drop in P2 , learning was concluded 

after 5,000 iterations.
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Figure 6.10 Strength Histogram after 5,000 Learning Iterations

Figure 6.10 displays the strength histogram for the classifier population after 5,000 

learning iterations. The histogram reveals an important result o f the genetic algorithm
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application. During an epoch, the classifiers which make incorrect decisions have their 

strength reduced, resulting in strength values which may fall well below the population 

mean of 10. However after the genetic algorithm is applied, the newly generated 

classifiers must replace present members in the population so to keep the population size 

static. The crowding and replacement is performed (as described in Chapter 3, Section 

3.3) which virtually eliminates all population members with strengths significantly below 

10 at each genetic algorithm application. The histogram in Figure 6 .10 may imply, by the 

number of population members above the mean strength bar, that the productive sub­

population consists of approximately 300 classifiers. However it should be recalled that 

the population is having potentially good classifiers introduced at every genetic algorithm 

application, which also removes the inferior classifiers; therefore as learning continues 

the population should consist more and more of good classifiers and the strengths should 

represent the ranking o f these good classifiers.
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Figure 6.11 Default Hierarchy fo r  Population after 5,000 Learning Iterations

Figure 6 .11 displays the default hierarchy plot for the population at this stage, (as 

contrasted with the initial population’s default hierarchy shown in Figure 6.3). The 

default hierarchies fall in hierarchies of specificity ranging from about 1 0  for the most 

general to nearly 50 for the most specific. The default hierarchies have contracted
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partially compared to the original population which had population members with 

specificities below 10. This reveals that there is a limit o f how general a classifier could 

be and still cause correct responses.

Figure 6.12 provides a view of the optimization process for one of the stochastically 

generated initial configurations of the elliptical solid rod under torsion loading, the 

optimization occurred after approximately 3,800 learning iterations. The mass value is 

normalized using the initial mass o f the design, therefore the mass line provides the 

fraction o f mass the design has as compared to the initial design. The TNSE values vs. 

optimization iteration number portrays a generally decreasing TNSE condition. A TNSE 

of zero represents a fully stressed boundary (Hsu [1992]). During learning, the design 

may become better or worse at any iteration. Regardless of the outcome, the generated 

(better or worse) design is used for further learning.
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Figure 6.12 Optimization o f  an Torsion Elliptical Rod Problem

Figure 6.13 displays the values of the design variables vs. optimization iteration for 

the same problems from the torsion elliptical solid rod cluster. Notice the range of 

dimension values spanned —  the initial design had a major axis value near 0 . 0 1 2  and a 

minor axis near 0.009. The optimum occurs when both axes equal 0.0048. Therefore, 

the optimization commenced with an initial design over 5 times heavier than the
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optimum’s. Figure 6.14 juxtaposes the initial design with the optimized design, the 

optimization transforms a highly overdesigned elliptical rod into an optimal circular rod.
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Figure 6.13 Dimension Values through the Optimization Process fo r  Torsion Elliptical 
Rod
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Figure 6.14 Initial and Optimized Shape o f Torsion Elliptical Rod
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It is little wonder that SPHINcsX was not always able to fully optimize the design 

within the 100 iteration limitation; it is quite an achievement, actually, that SPHINcsX 

could optimize some of the initial designs from this cluster. Recall from Chapter 2, 

Section 2.5.1 that most state-of-the-art optimization methodologies deal with initial 

designs that are within a factor of two of the optimal mass design.

6.3.3 Learning Supervision & Order Dependencies
The learning described above presents a supervised learning regime with a defined 

ordering of the design cluster introductions. As mentioned in Section 6 .1, SPHINcsX 

could be trained with many initial design selection schemes. A selection scheme could be 

devised so that SPHINcsX started by selecting a design from all designs in the learning 

suite, creating an unsupervised learning regime. In such a case there would be no 

ordering in the introduction o f the design clusters since their introduction would be 

stochastically decided.

This flexibility in the learning regime is not speculation. During this research many 

learning regimes were tested, one of which was used in Richards & Sheppard [1992]. 

Again as mentioned, a major consideration in using the learning regime described in this 

chapter was the need to monitor learning performance throughout the process.

Just as ranking the feedback can improve the learning performance, supervised 

learning may prove more efficient than unsupervised learning, however, too much 

supervision or constraining may also restrict learning. The ordered introduction of design 

clusters did provide a generally (though not monotonic) increasing level of performance.

It is difficult to track the value of the knowledge gained in the earliest stages of the 

learning regime because valuable knowledge is usually propagated as valuable sub-units 

of classifiers (schemata) not as entire classifiers. However, it is interesting to note that 

out of the population of 1 ,0 0 0  classifiers which existed at the end o f the tension rod 

cluster evolution (learning iteration 1,500); 30 still remained at the completion o f the 

learning regime. Out of these 30, 7 remained above average strength classifiers
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throughout the learning regime, providing more evidence to support the results above 

exhibiting the general nature o f  SPHINcsX’s learning.

6.4 Summary
The learning regime used to teach SPHINcsX, applied the learning suite o f problems 

defined in Chapter 5 to SPHINcsX in learning mode. The learning regime presented a 

stochastically generated initial design from one of the design clusters in the learning suite 

to SPHINcsX for optimization. SPHINcsX attempted to optimize the design within a 

maximum of 100 iterations. After a successful optimization or after 100 iterations, 

whichever came first, another initial design was generated and presented to SPHINcsX. 

W henever an epoch (150 learning iterations) occurred, the genetic algorithm was applied 

providing a mechanism for exploring the space o f potentially better hypotheses from the 

current population. Table 6.1 summarizes some of the aspects of the learning process, 

showing the ranges of learning iterations applied to each design cluster as well as 

presenting the level of the performance metrics P I  and P2 at the end of each cluster’s 

learning phase. Recall from Section 6.3.1 that the ranges of learning iterations applied to 

each design cluster were determined empirically by monitoring P I P2 and P3.

Table 6.1 Learning Summary

Design
Cluster

Iteration
(Start)

Iteration
(End) PI P2

TRg (n=5) 1 1 , 5 0 0  ( t j ) 69 82
PV 1, 501 2 , 0 0 0  ( t „ ) 70 76

TSR 2,  001 2 , 8 0 0  ( t i n ) 69 71
CB 2,  801 3 , 5 0 0  (t IV) 70 70

TESR 3 , 5 0 1 4 , 4 0 0  (tv) 69 71
TEHR 4 , 4 0 1 5 , 0 0 0  ( tv i ) 70 74

SPHINcsX rapidly evolved the initial tabula rasa population into one that allowed it 

to perform significantly better than the tabula rasa after only a few epochs. Evidence of 

the generality of the sub-population o f above average classifiers (strength > 1 0 ) was their 

low specificity, and more importantly their ability to handle new clusters o f problems
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with significantly better than random performance. Each new cluster of problems 

exposed SPHINcsX to situations where the above average strength general classifiers 

could be tested to verify that their generality was appropriate for a wider array o f shape 

optimization situations. In the cases where general classifiers failed in new situations, 

their strengths waned due to continued incorrect responses or exception classifiers 

covering the situations where the general classifier would have erred.

The choice o f problems to include in the learning suite was influenced by many 

factors, the primary being the level o f  problem difficulty and diversity necessary to 

exercise SPHINcsX into evolving non-problem specific classifiers. As already noted, the 

learning suite consists o f size optimization problems, while an objective is the 

development of a shape optimization methodology. Only through experience o f learning 

with shape problems (Richards & Sheppard [1992]) and by learning with size problems 

was it discovered that size problems, if diverse enough, could provide similar levels of 

learning than their more computationally expensive shape brethren.

The performance levels reached in the learning regime are testament to the learning 

capability o f SPHINcsX and the underlying classifier system. Even though the results of 

the learning provide ample evidence o f SPHINcsX’s ability to perform optimization, the 

learning regime’s intention is not proof of success, only a hint. Only by applying 

SPHINcsX to problems considered more difficult (to humans) and never before seen by 

SPHINcsX can success or failure be judged. Chapter 7 provides this examination.
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Chapter

7

Applications

This chapter tests and applies the now learned SPHINcsX. The chapter opens with 

a detailed look at the SPHINcsX algorithm in application mode. The major 

subject matter of this chapter is the application o f SPHINcsX (in application mode) to 

three heretofore unseen problems. That is, to test the generality of SPHINcsX, and its 

rule set, to solve any problem within a scope, three problems never applied to SPHINcsX 

in the learning phase are used to test the accomplishment of the learning regime. 

Accomplishment is measured by determining if SPHINcsX has reached the objective of 

being able to perform generalized shape optimization on stress constrained designs 

without auxiliary information.

The learning regime consisted o f problems all from the sizing optimization class (see 

Chapter 2, Section 2.2, Shape Optimization Classes). The three problems used to test 

SPHINcsX are drawn from the shape optimization class. One of these is a three- 

dimensional general shape optimization problem intended to provide a rigorous 

examination. The chapter closes with an review of SPHINcsX’s performance, comparing 

the performance with other modern methods when such are available.

7.1 Application Mode
The classifier system, and hence SPHINcsX, has two major modes: the learning 

mode and application mode, as first described in Chapter 3, Section 3.1. Chapter 6  

described the progress o f SPHINcsX with its classifier system in learning mode. 

SPHINcsX learned to operate in the structural component shape optimization 

environment. In this chapter, SPHINcsX is applied to design optimization problems 

using its learned rules in application mode. The application mode is a subset of the 

learning mode; the major difference is that in application mode, the classifier system does
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not receive feedback from the environment, no strength changes occur, and the genetic 

algorithm is not applied. Algorithm 5.1 presented the SPHINcsX algorithm with the 

classifier system in learning mode. Algorithm 7.1 provides the basic outline o f 

SPHINcsX in application mode. A more detailed version o f the application mode 

algorithm used by SPHINcsX is provided in Appendix B.

Algorithm 7.1: SPHINcsX Algorithm in Application Mode

Initialization & Termination Modules
I. Initialization of Classifier System (Chapter 5, Section 5.2)
II. Initialization of a design to be optimized (Chapter 5, Section 5.3)
III. Increment (Chapter 6)

Set optimization problem iteration, /, equal to i + /
IV. Continue to Optimization Loop

Optimization Loop
I. Analysis Module: Iterations: all (Chapter 2, Section 2.4.2)
II.A. Detector Interface Iteration: 1 (Chapter 4, Section 4.3)

Read: Mass, Maximum allowable von Mises stress, Limits on dimensions.
Global element length 

B. Detector Interface Iterations: all
Read: von Mises stress at: control points, straddle points, interior points 

Convert stresses to their binary representation 
Create environmental messages

III. Auction module Iterations: all (Chapter 3, Section 3.1.2.1)
1) Match environmental messages with classifiers.
2) IF no classifiers matched in 1), apply the triggered cover detector

operator, skip to step III.4
3) Auction: Have all the classifiers that matched in 1) compete in an auction to 

determine which one shall be permitted to execute its action.
4) Pass the action of the victorious classifier to the effector interface.

IV. Effector Interface Iterations: all (Chapter 4, Section 4.4)
Modify all control points which matched the victorious classifier.

V. Termination criteria Iterations: all (Chapter 4, Section 4 .1)
1) IF all control point stresses are within e of the optimum

THEN terminate this design’s optimization.
2) IF iteration i is greater than a user supplied maximum (if any)

THEN terminate this design’s optimization.
3) IF none of the above termination criteria are satisfied

THEN continue.
VI. Set the active design to the design created in step IV 

Set / = /+ !
Return to step 1._______________________
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7.2 Applications
The three design optimization problems presented below provide a test of 

SPHINcsX’s shape optimization performance. Recall, as discussed in Chapter 2, that 

shape optimization performance consists of:

• scope,

• efficiency,

•  effectiveness.

The sub-sections below concern themselves primarily with discovering if the learned 

SPHINcsX has learned to solve problems within the scope exemplified by the 

applications, which is two and three-dimensional shape optimization. With the design 

scope established, Section 7.3 conducts further performance analysis o f SPHINcsX’s 

efficiency and effectiveness.

The following provides a brief description of the three test problems:

1. Cantilever beam: Generalized symmetrical cantilever beam design with a 
modifiable boundary defined by four moveable control points connected by 
piecewise cubic splines.

2. Torque arm: Symmetrically shaped torque arm under bending and tensile load 
with a modifiable boundary defined by fixed end conditions and six moveable 
control points connected by piecewise cubic splines.

3. Spherical pressure vessel: General three-dimensional pressure vessel with a 
spherical exterior under constant pressure loading and an irregular interior 
void defined by a three-dimensional surface patch. The three-dimensional 
surface patch is to be optimized.

As can be seen, the level o f  difficulty increases from the cantilever beam to the pressure 

vessel.

7.2.1 Shape Optimization: Cantilever Beam
The problem o f optimizing a cantilever beam was used in the learning regime. The 

learning regime design, however, was simpler than the design considered here. The
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learning cantilever beam design was a sizing optimization problem where the shape of all 

the boundaries remained constant (i.e. straight line boundaries remained straight lines).

The goal of the current problem is to find the shape of the lightest cantilever beam o f 

fixed length, L, by varying the shape o f the boundary between the fixed end and the free 

end without exceeding the maximum allowable von Mises stress. The beam ’s shape is 

invariant through its thickness, t. The beam supports a transverse load, F, at one end and 

is fixed to a support at the other end. Figure 7.1 depicts the initial design. Four control 

points define the modifiable boundary which is composed of piecewise cubic splines.

The initial boundary has all control points evenly spaced along a linear boundary between 

the endpoints. The control points are further constrained to move only along the y-axis, 

however, this constraint does not restrict the generality o f the curve which can be 

generated. The solution is assumed to be symmetric about the center line along the length 

of the beam; therefore, the upper and lower boundaries are constrained to be symmetric.

t
i

Control
points

wH eH

Shape Optimization Cantilever Beam Initial Design Model

The load is applied at the free end so that the shearing forces on the free end are 

distributed according to the same parabolic law as the shear stress, T, given by beam 

theory (Timoshenko & Gere [1972]) and shown in Equation 7.1. In addition, the 

resulting shearing reaction forces at the built-in end are distributed according to the same 

parabolic law as the shearing stress, given by beam theory; and the intensity of the normal 

forces at the built-in end is proportional to y, the distance from the neutral axis. The 

maximum von Mises stress allowed by the material, and an appropriate factor o f safety, is
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10 MPa. Table 7.1 summarizes the initial design parameters. The initial design has a 

mass of 58.46 grams (cross-sectional area is, 740.0 mm2, thickness is 10 mm, and mass 

density o f steel is 0.0079 g/mm3).

Table 7.1 Shape Optimization Cantilever Beam Problem Parameters

Name Label Value
Force/thickness F/t 10,000 Newtons/m

Length L 0.04 meters
Height at Wall wH 0.020 meters (variable)

Height at Free End eH 0.017 meters (variable)
Maximum Allowable 

von Mises Stress
Co 10*106 Pascals

Convergence Limit e 0.02
Element Length EL 0.001 meters

Mass M Determined by l-DEAS™

This problem offers the opportunity to compare a discrete shape optimal solution to a 

known analytical solution. The analytical optimum shape is parabolic and the 

relationship between the height of the beam (y) and the length (x) is given by Equation 

7.1:

6 * ( F / 1) * ( L - x )
-V = J  4 *0 -̂---------’ (7I)' o

where the load per unit width, F/t, equals 10 N/mm; CT0 = 10 MPa; length L = 40 mm. For 

the parameters considered here, the theoretical minimum mass beam has an area of

413.12 mm2 (32.64 grams).

SPHINcsX performed the optimization using the I-DEAS™ finite-element analysis 

module. These results correlated closely to beam theory stress prediction, with the loaded 

end showing the greatest discrepancy. SPHINcsX produced an optimal discrete solution 

with a mass of 33.66 grams (426.1 mm2), a 42% decrease in mass. The discrete solution 

is only 3.1% more than the analytical solution. SPHINcsX converged to within 2% of a 

fully stressed boundary after 25 iterations. Only one equivalent finite element analysis 

was required in each iteration. Recall from Chapter 2, Section 2.5.1 that an equivalent
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analysis considers the extra overhead of determining auxiliary information such as 

sensitivities, so if  a sensitivity based system solved this problem, each analysis would be 

greater than one equivalent analysis.

Figure 7.2 compares the final shape with Equation 7.1. The curve generated by 

SPHINcsX has the same shape as that from the ideal beam theory, differing greatest near 

the loaded end due to the lower bound placed on the loaded end’s height.

Figure 7.3 shows the iteration histories of the performance index TNSE and 

normalized mass for the beam. Figure 7.4 presents the design variables from the initial 

design to the optimum, the labels for the control points are as defined in Figure 7.1. It is 

informative to view Figure 7.3 with Figure 7.4, noting how the TNSE and mass values 

vary with changes in the design variable values.

As further discussed in Section 7.3, the efficiency o f determining the optimum in 

under 30 iterations is comparable to the state of the art, while the effectiveness of 2% (e 

= 0.02) is well within the limits used by most optimization techniques. This initial 

success betokens the breadth of SPHINcsX’s scope.

r ! 10y [mm]
8 

6 

4 

2 

0
0 5 10 15 20 25 30 35 40

x [mm]

Figure 7,2 Cantilever Beam: Comparison o f the Final Curve with Beam Theory

Beam Theory
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Figure 7.3 Optimization o f  Cantilever Beam
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Figure 7.4 Cantilever Beam Design Variable History
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7.2.2 Shape Optimization: Torque Arm
Botkin [1982] introduced the torque arm shape optimization problem. Since then 

many variations have been used to test a multitude of shape optimization methods. A 

sampling from the literature includes:

• Bennett and Botkin [1985],

• Braibant and Fleury [1984], Braibant and Fleury [1985],

• Yang, Choi and Haug [1985],

• Rajan and Belegundu [1989],

•  Hsu [1992],

• Widmann [1994],

The goal o f this problem is to find the shape that minimizes the mass o f the torque 

arm by varying only the shape of the boundary between points A and B as shown in 

Figure 7.5, without exceeding the maximum allowable von Mises stress. The torque 

arm ’s shape is invariant through its thickness, t, and is loaded by both a transverse load,

Fi„ and a tensile load, F,, on the inside o f the small hole. In addition, the torque arm is

constrained around the circumference of the larger hole located at x  equal to 0.0416 m. 

Figure 7.5 depicts the initial design, displaying the fixed dimensions, loading and 

constraints.

CP5 CP6CP4CP3C P2C P I
Ft=2789N

. 0.08
0.04 0.10871.020

♦j 0.060.416

unit: meters

Figure 7.5 Initial Configuration and Loading Conditions o f  the Torque Arm
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The solution is constrained to be symmetric about the center line along the length of 

the torque arm to account for reversed bending loads. For the loading shown in Figure 

7.5, the transverse load places the bottom surface in compression while the tensile load 

places the bottom surface in tension. In contrast, the top surface experiences tensile 

stresses as a result of both forces; therefore by superposition, the top surface is the critical 

surface. Due to the geometric symmetry, and loading conditions, only the top boundary is 

modeled with design variables. Six control points and the two fixed end points define the 

top boundary, thus the problem has six design variables. Piecewise cubic splines define 

the boundary, and the initial boundary has all control points evenly spaced along a linear 

boundary. The control points, shown in Figure 7.5, are constrained to move only along 

the y-axis. The thickness of the material is 0.003 m and the maximum allowable von 

Mises stress is 810 MPa. Table 7.2 summarizes the problem parameters.

Table 7.2 Torque Arm Problem Parameters

Name Label Value
Tensile Force F, 2789 Newtons
Bending Force Fb 5066 Newtons

Maximum Allowable 
von Mises Stress

do 810*106 Pa

Convergence Limit 8 0.02
Element Length EL 0.01 meters

Thickness t 0.003 meters
Mass M Determined by I-DEAS™

Figure 7.6 displays the initial finite element analysis model generated by the 

I-DEAS™ automatic mesh generator. Point loads of 5066 N in the negative y direction 

and 2789 N in the negative x  direction are applied to the small hole of the arm as shown. 

The nodes around the circumference of the large hole are constrained to zero 

displacement in all six degrees of freedom. The initial analysis model consists of 210 

shell quadrilateral type elements. The I-DEAS™ Master Series automatic mesh generator 

created the mesh. However, before the mesh generation, pseudo-forces are placed at the 

control points, so the automatic mesh generator creates nodes at those locations.
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Figure 7.6 Initial Analysis Model o f  the Torque Arm

SPHINcsX converged to within 2% of a fully stressed boundary after 36 iterations. 

Only one equivalent finite element analysis was required in each iteration. Figure 7.7 

shows the iteration histories of the performance index TNSE and normalized mass for the 

torque arm. Figure 7.8 presents the design variables showing their progress from the 

initial design to the optimum. Figure 7.9 shows some o f the finite element models during 

the iterations; the initial mass is, 0.824 kg (mass density of steel is 7,900 kg/m3). The 

mass o f the final design is 0.540 kg, a 34.5% decrease in mass. This example 

demonstrated the capability of SPHINcsX in solving a realistic design problem.
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Figure 7.7 Torque Arm: Iteration History
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Figure 7.8 Torque Arm: History o f Design Variables
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(a) Initial Shape

(b) 1 2 th iteration

(c) 24th iteration

•j-f-H-K't
f— r— r—

(d) Final shape (36th iteration) 

Figure 7.9 Torque Arm: Finite Element Models
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7.2.3 Three Dimensional Shape Optimization: Pressure Vessel
This section considers the optimization o f  a three-dimensional pressure vessel. 

Recall from Chapter 4, Section 4.3 that the prominent straddle point definition included 

provisions to seamlessly allow for three-dimensional boundaries. Before proceeding, 

details of how SPHINcsX handles three-dimensional structural component shape 

optimization are presented. Note that no supplemental education is provided before 

attempting to apply SPHINcsX to three dimensions. The classifier population that 

learned via a suite o f sizing problems is expected to handle this challenge. Three- 

dimensional boundary representations compliant with SPHINcsX’s restrictions are a 

direct extension of the two-dimensional boundary representations. Essentially any 

boundary where the control points lie on the boundary itself is acceptable.

In either the two-dimensional (2-D) case or the three-dimensional (3-D) case, each 

control point has one associated interior point that is one element length interior to the 

control point along the surface normal. The number of straddle points per control point 

varies depending on the boundary representation and the analysis model; however, the 

concept of prominent straddle point leads to the same environmental message format 

being constructed by the detectors in both the 2-D and 3-D scenarios. Thus, the structure 

o f the individual classifiers remain the same, as does all of the internal operations of 

SPHINcsX. Therefore, the only extension to SPHINcsX necessary to move into the 3-D 

realm is the ability to read multiple straddle point stresses from three-dimensional 

analysis models.

Figure 7.10 juxtaposes a control point (shown as a box) with its associated interior 

point and straddle points (shown as circles) for 2-D and 3-D cases. In Figure 7.10, the 

3-D case shows the control point, three straddle points and the interior point, although 

more straddles may be present but not displayed. This display demonstrates that by 

utilizing the concept of prominent straddle point, the detectors are equally adept at 

accepting 2-D and 3-D boundary representations.
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Surface Normal
Surface Normal

2-Dimensional 3-Dimcnsional Boundary

Figure 7.10 Control Point Layout on 2-D Boundary and 3-D Surface

A major influence determining the choice of the first two application problems, the 

cantilever beam and the torque arm, was that the solution given by SPHINcsX could be 

compared to other methods in the literature. Both problems have been used as test cases. 

The cantilever beam provides the added benefit o f having a theoretical optimum with 

which to compare. The torque arm provided a more pragmatic test where even though 

the theoretical optimum can not be derived analytically, due to previous studies by others, 

a gauge o f success could be measured.

The selection of the 3-D pressure vessel as a test case is mainly derived by the fact 

that an optimal solution is ‘known’. Although an analytically derived optimum may not 

be forthcoming, an argument based on symmetry reveals that the optimal internal cavity 

should be spherical and centered about the exterior sphere’s center. This symmetry 

condition decreases the generality and difficulty o f the problem, although SPHINcsX 

knows not of this symmetry.

The optimization of a simple 2-D thick walled pressure vessel was first considered in 

Chapter 5, Section 5.3.2, where it was used as part of the learning suite. Recall from the 

problem description that the pressure vessel was a sizing problem where both the internal 

and external boundaries were constrained to remain circles, and the design variable was 

the radius o f the internal boundary. This application utilizes a spherical pressure vessel, 

with a fixed spherical exterior loaded by a constant pressure. The initial interior cavity is 

an irregular non-optimal void.
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The goal o f this problem is to find the shape o f the cavity that minimizes the mass of 

the pressure vessel without exceeding the maximum allowable von Mises stress. The 

void is modeled using a variational method (Lange [1994]) to more closely simulate how 

it might be modeled in practice. The void is modeled by seven layers o f design variables, 

as shown in Figure 7.11, the first and seventh (top and bottom) layers each only have a 

single point representation, each o f the other layers is represented by four control points. 

Therefore there are a total of 22 control points. The non-end layers’ four control points 

are distributed evenly about the vertical axis but their radial distances from the vertical 

axis are not equal. So a closed loop fitted to an internal layer’s four control points would 

not result in a circle, but an irregular curve.

The top and bottom points (control points defining layers one and seven) are 

restricted to move along the vertical axis. The control points in the other five layers can 

each independently move in the plane defined by the layer in the radial direction. The 

heights of the control points in layers two and three are variationally determined relative 

to the height of the control point o f layer one, similarly the heights o f the control points in 

layers five and six are variationally determined relative to the height o f  the control point 

of layer seven. The height of layer five is considered zero and does not change. The 

height of all the points in layer two is 2/$ the height of the control point in layer one, 

similarly the height of all the points in layer three is l/j the height of the control point in 

layer one. For layer five the height is '/■* the height of layer seven and for layer six the 

height is 2/j the height of layer seven.
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Figure 7.11 Initial Cavity o f  the Spherical Pressure Vessel

The control points’ freedom of movement is only restricted as described above. The 

boundary is intended to be able to assume virtually any shape and there are no symmetry 

conditions. Figure 7.11 depicts the initial cavity. The pressure vessel exterior is spherical 

with a of radius, h, equal to 0.25. The exterior is loaded by a constant pressure, P,„ equal 

to 500.000 Pascals; and the internal pressure, P„ is zero. The maximum allowable von 

Mises stress is 1.0 MPa. The initial design has both under stressed regions and over- 

stressed regions. This condition is set to verify that SPHINcsX can optimize both feasible
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and infeasible designs. Table 7.3 summarizes the problem parameters. Table 7.4 

provides the initial dimensions for the control points defining the internal cavity.

Table 7.3 Three-dimensional Pressure Vessel Problem Parameters

Name Label Value
Internal pressure P, 0 Pascals
External pressure P n 500,000 Pascals

Maximum Allowable 
von Mises Stress

Oo 1*10b Pa

Convergence Limit e 0.01
Element Length EL 0.005 meters

Mass M I-DEAS™ Solid Model
External Radius (fixed) b 0.25 meters

Table 7.4 Three-dimensional Pressure Vessel Initial Design Variable Values

Layer

Number
of

Control
Points

Initial Value ol Control Point

1 2 3 4
1 1 0.20 * **  #  ™ i -  ,  ?

2 4 0.14 0.13 0.15 0.145
3 4 0.16 0.17 0.175 0.165
4 4 0.20 0.19 0.17 0.18
5 4 0.19 0.18 0.17 0.16
6 4 0.14 0.13 0.15 0.12
7 1 0.2

One node on the exterior of the model is constrained to zero displacement in all six 

degrees of freedom. The initial finite-element analysis model consists o f 2675 parabolic 

tetrahedral elements and was created by the I-DEAS™ Master Series automatic mesh 

generator created the mesh.

SPHINcsX converged to within 1 % of the maximum allowable stress over each curve 

after 51 iterations. Only one equivalent analysis was required in each iteration. Figure

7.12 shows the iteration histories of the performance index TNSE and normalized mass
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for the pressure vessel. Because o f the multiple curves that make up the design, the 

TNSE values of each curve are shown with line plots instead o f bar charts, as was done 

previously. The figure depicts the overall progress and the success o f finding a near 

optimal solution.

Mass — <
♦♦♦»»»♦♦ r>ooMt

Curve 2 -----
Curve 3 -----

v Curve 4 ------

|  i-------- 1 Curve 5 ------
I I 1 Curve 6 ------

I 1 Curve 7 -------

TNSE,
Mass (Normalized)

0 5 10 15 20 25 30 35 40 45 50 55

Optimization Iteration

Figure 7.12 Three Dimensional Pressure Vessel: Iteration History

Verification o f the thick walled pressure vessel solution is accomplished by 

comparing it to an analytical solution. The verification proceeds under the assumption 

that for constant pressure loading, the optimal shape o f the inside boundary is spherical. 

For a three-dimensional pressure vessel with a spherical exterior and spherical cavity, the 

principal stresses on the interior surface are (Roark & Young [1982]):
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where b is the outside radius, a is the inside radius, and P„ is the external pressure. The 

von Mises equivalent stress is the greatest along the inside boundary. Recall, for the 

design considered here, the maximum allowable von Mises stress is 1.0 MPa. Given that 

the outside radius equals 0.25 meters, yields an optimal inside radius o f 0.1575 meters. 

The SPHINcsX solutions is approaching the spherical optimal shape. Figure 7.13 shows 

the points which constitute the locations on the cavity of SPHINcsX’s optimal design 

superimposed over the sphere o f the analytical optimum cavity, with the view chosen for 

it shows the largest amount of error. This figure reveals that almost all the points lie 

close to the optimal solution with no large discrepancies, displaying that SPHINcsX has 

nearly discovered the symmetry of the optimal solution without a priori knowledge that 

any symmetry existed.
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Figure 7.13 Comparison o f  SPHINcsX Solution with Analytical Optimum fo r  Internal
Void

Another plot which shows the progress of the optimization process is one that shows 

the mean radius and the standard deviation from the mean as optimization iterations 

progress, this plot is shown in Figure 7.14. The mean radius had an initial value of 0.19 

meters and converged to 0.159 meters. This converged mean is 1.5 mm (< 1 %) greater 

than the optimal mean radius. This three-dimensional pressure vessel problem has
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convincingly demonstrated the ability of SPHINcsX in solving three-dimensional shape 

optimization design problems.
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Figure 7.14 Mean Radius and Standard Deviation fo r  3-D Pressure Vessel

7.3 Performance Analysis
The previous section demonstrated that two- and three-dimensional shape 

optimization are within SPHINcsX’s scope. The efficiency and effectiveness were also 

discussed and displayed graphically. This section compares SPHINcsX’s efficiency and 

effectiveness with other state-of-the-art methods.

Considering first other methods which cover SPHINcsX’s scope, recall from Chapter 

2, Section 2.5.1 that few exist and those that do suffer debilitating limitations. For 

example, genetic algorithm based systems (see Jensen [1992]) can handle all problems in 

SPHINcsX’s scope also without auxiliary information but the solution times would be 

(conservatively) in the thousands of iterations. SPHINcsX’s computational requirements 

should be drastically less in 3-D than techniques which depend on sensitivity information, 

but successful applications in the literature are scarce (Kodiyalam et al. [1992]) and
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applying commercial solutions is restricted by the fact they can not work with general 

shape representations as input to their optimization modules. The literature does provide 

some 3-D sizing optimization examples, Yang [1989], Botkin & Yang [1991], and Noel 

et al. [1995]. An illustration of the considerable cost of performing 3-D optimization 

utilizing sensitivities is provided by Chargin et al. [1991] where, with 23 design variables, 

the sensitivity calculation per analysis required over six times the computational overhead 

as the underlying analysis.

Modern optimization methods provide more competition to SPHINcsX in the realm 

of two-dimensional shape optimization. Again, recall from Chapter 2, Section 2.5.1 that 

many systems have been able to perform optimizations on simple shapes with a few 

design variables in the order of 2 0  equivalent analyses where the optimum is on the order 

of 33% lighter than the original design (e.g., Kothawala et al. [1988], Vanderplaats & 

Blakely [1989]). For the case o f the cantilever beam, SPHINcsX proved to be 

competitive, optimizing in 25 iterations with an associated decrease of 44% in mass.

For the torque arm SPHINcsX determined the optimum in 36 iterations. This is 

competitive with other methods, however, many specialized methods are much more in 

their element with this problem and perform considerably better. Belegundu [1993] 

found an optimum shape o f a similar torque arm design in 17 equivalent analyses with a 

40% reduction in weight using a sensitivity based method, while Hsu [1992] performed 

shape optimization on a nearly equivalent design reducing the mass 38% in less than 10 

equivalent analyses without any auxiliary information using the curvature function 

method. Note at the other end o f the performance spectrum, Yang and Fitzhom [1992] 

have applied the genetic algorithm approach to the two-dimensional torque-arm design 

with the optimum being found after over 1 0 0 ,0 0 0  analyses.

7.4 Summary
Observing how SPHINcsX operates, the generality of the complex may be 

appreciated. SPHINcsX does not notice differences between size and shape optimization

157

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

problems. SPHINcsX’s computational requirements increase modestly with regard to the 

number o f design variables. As the number o f design variables increases, SPHINcsX, 

operating with only the minimum criteria, requires only one equivalent analysis solve per 

design change regardless of the number of design variables. Using the multiple-control 

point modification technique, as defined in Chapter 4, Section 4.4.1, allows for many 

design variables to be modified per iteration in an intelligent manner.

Since one analysis is required per iteration, irrespective of the number o f design 

variables, the efficiency relative to conventional optimization increases significantly as 

the number o f design variables increases. The three-dimensional spherical pressure 

vessel evidenced this point, even with 2 2  design variables the complex optimized the 

problem in under 55 iterations. Assuming that the sensitivity based system used by 

Chargin et al. [1991] could solve the problem, it would have to reach the optimum in 8  

iterations to rival the efficiency of SPHINcsX, due to  the sensitivity calculation overhead. 

SPHINcsX has demonstrated its latitude in handling problems with various boundary 

representations and working with different analysis modules, providing efficient 

optimization for situations where the only other option is to use techniques which require 

thousands of analyses. The methodology and complex thus broaden the design latitude 

afforded the engineer.
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Chapter

8

Summary & Conclusions

his research resulted from the need to discover an efficient generally applicable

scalable shape optimization methodology. In the search for such a methodology,

non-calculus-based search and optimization techniques were explored to determine if  any 

could provide results superior to the state o f the art. Machine learning in general and the 

classifier system in particular appeared to possess the desired features. The results 

presented here demonstrate that the classifier system indeed can be a valuable tool in 

helping to solve shape optimization problems, and its generality portents its value in other 

mechanical engineering problems. The rest o f this chapter summarizes and draws 

conclusions from this study. After an overview is presented, major new knowledge 

derived from this study is summarized. Then certain unexpected serendipities that arose 

during the research are described. Some minor limitations and ways in which they could 

be ameliorated are next covered. Finally, future research directions and final conclusions 

are presented.

A major limitation o f calculus-based shape optimization techniques is the calculation 

o f sensitivity information. The computational overhead o f calculating the sensitivities is 

a major consideration and increases dramatically as the number of design variables 

increases. One of the results o f this research, SPHINcsX, learned to perform general 

shape optimization and did so without the benefit o f sensitivity information or any other 

auxiliary information. Furthermore all the learning occurred via exposure only to two- 

dimensional sizing optimization problems. It is a further credit to the methodology that 

not only does it not need sensitivities but it learned without knowing anything about the 

initial shape, the representation o f the curve under modification, the concept of stress and 

strain or optimization. Essentially, SPHINcsX learned to recognize patterns o f stress and
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execute appropriate action. That is, the mapping between a control point’s stress pattern 

and beneficial control point modification has been discovered.

Since the method does not require sensitivity calculation, the system is independent 

of analysis technique, be it constitutive equations, computer simulations, or empirical 

derivation. For most modem industrial problems, the analysis is derived from 

commercial simulation software where modifications to the software to implement 

sensitivity analysis are not practical. Zeroth-order methods are easier to exploit in 

conjunction with commercial simulation software as the integration of SPHINcsX with 

I-DEAS™ attests.

The results illustrate the computational efficiency of SPHINcsX. The computational 

effort, after learning, is small relative to that of methods using sensitivity analysis. The 

pressure vessel application demonstrated how the computational effort increased less than 

linearly with the increase in design variables. Note that to maintain the same resolution 

of boundary description when moving from two-dimensions to three dimensions, the 

number of design variables is squared. Thus sensitivity based methods, which are already 

computationally constrained by non-trivial two-dimensional structures, face a daunting 

task when three-dimensional components are encountered.

8.1 New Knowledge
This study has created a significant body o f new knowledge, both in the focus of 

component shape optimization and in the more general realms o f  mechanical engineering 

and classifier systems.

The knowledge derived from this research related to component shape optimization 

is the development o f the shape optimization via hypothesizing inductive classifier 

system complex methodology and software system. Salient characteristics o f this 

methodology include:

•  stable performance,

•  scope covering two- and three-dimensional shape optimization,
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• needs only minimum criteria (zeroth order),

• surpasses or rivals the efficiency of state of the art,

• independent of analysis technique,

• compatible with most boundary representations.

Associated with SPHINcsX and a body of knowledge which SPHINcsX learned 

itself is the resultant:

• learned population of classifiers.

SPHINcsX evolved this population, which can perform two and three-dimensional shape

optimization, by using only a diverse suite of sizing problems.

More general knowledge derived from the research and applicable to the wider 

domain of mechanical engineering includes:

• demonstrating machine learning’s applicability as a tool for mechanical 
engineering design,

• providing a complete example in order to illustrate how to apply machine 
learning in general and classifier systems in particular to mechanical 
engineering,

• illustrating the issues related to interfacing the classifier system domain with 
the mechanical engineering domain, and the determination of appropriate 
values for the myriad o f classifier system parameters.

The last bullet is important because engineering judgment is critical in many aspects 

o f the classifier system application. If the domains are not interfaced correctly or 

inappropriate parameters are used failure in application will ensue. For a new tool, such 

as the classifier system, there is high risk o f inappropriate maligning by early adopters 

who fail to apply the tool properly, which could result in other researchers not applying 

the tool because of perceived inadequacies. Some of the critical factors include the form 

o f a classifier; how long of a condition is required, should the condition consist o f one 

part or many parts, and what form should the action take? These choices are in large part 

driven by considerations related to what is important enough to be represented and what 

actions should be performed. A balance is needed between the power of CS to solve
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problems in a generalized sense and the need to provide the CS with enough information 

in order to learn. O f course, all the domain dependent information available can be 

supplied to the CS, and it may learn faster, but then the CS will be trapped in a narrow 

domain of applicability. This may be suitable for many applications and is not 

discouraged. Furthermore, the feedback process requires judgment so the merit of 

changes are properly handled to provide appropriate reward or punishment.

Since the research was not intended to advance the understanding of classifier 

systems, the insights in this domain are less significant. Observations from this research 

regarding classifier systems include:

• Another successful application of the CS without the bucket brigade 
algorithm. This study and the results o f many others (both engineering and 
non-engineering) show that the CS is a powerful tool when applied as a 
stimulus-response agent.

•  Much can be gleaned from the CS learning by the use of strength histogram 
plots and default hierarchy plots which previously had not been utilized in the 
classifier system literature.

8.2 Serendipities
The research reported here did not, o f course, progress in a nice linear fashion.

There were many fits and starts, avenues explored then abandoned, and innumerable other 

explorations which are the natural result of the quest for new knowledge. Some o f the 

explorations which may not have been fully realized in this work have significant merit 

on their own. Some of the more tangible serendipities o f this research are mentioned 

below.

One of the avenues explored would have utilized simulated annealingt instead o f a 

classifier system. Simulated annealing provides a general optimization technique; 

however, the efficiency leaves much to be desired. A property that plays a key role in the

T Simulated annealing is a slochasiic search technique founded on Ihc analogy of melal annealing. Beneficial as well 
as detrimental modifications arc permitted with the magnitude and likelihood of a detrimental effect decreasing as 
the ‘temperature’ decreases with increasing iterations.
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efficiency o f simulated annealing is the annealing schedule. If an annealing schedule 

could be derived to produce highly optimal results with relative efficiency, then simulated 

annealing could remain as a candidate for use in this study. The possibility resulted in the 

derivation o f an optimal annealing schedule (Richards [1990]). Even by utilizing the 

optimal annealing schedule, simulated annealing proved too inefficient for shape 

optimization, requiring the same order o f magnitude o f analyses as genetic algorithm 

methods.

This research utilized I-DEAS™ extensively, unfortunately I-DEAS™ and other 

general purpose engineering software are not designed to interface with third-party 

optimization. To circumvent this discrepancy, extensive use was made o f the I-DEAS™ 

Application Programmers Interface (API) termed Open Architecture. A component of 

Open Architecture is the I-DEAS™ programming language called Open Language. After 

leveraging Open Language extensively and being hindered by the poor documentation it 

became apparent that others could benefit from supplemental documentation and training. 

The result is a tutorial (Richards [1994]) which has been sold internationally, and a 

tutorial which has been taught at the annual I-DEAS™ user’s group conference.

In order to display the classifiers in a more intelligible manner, a viewer was created 

to translate the alphabet of classifier systems to bar charts. The viewer was not directly 

necessary to conduct the research but was a helpful aid in explaining the meanings of the 

classifiers. The viewer has been distributed to other classifier system researchers.

8.3 Limitations
The limitations under which this research was conducted include:

•  Optimization performed on isotropic components acted upon by forces, or 
loads, in static equilibrium.

• The design modifications will occur by modifying the boundaries of the 
component; no new boundaries such as voids will be introduced.

•  The objective will be to minimize the component’s mass.
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• Constraints will be placed on the maximum stress allowed.

• Acceptable boundary representations must have boundary defining control 
points physically located on the boundary.

There is nothing related to the methodology developed in this research which 

prevents any of the present limitations from being overcome. All the limitations except 

for the boundary representation limitation would cause a change in the environment or the 

actions performed. Therefore, these limitations would require modification to the 

interfaces and supplemental training, however the overall methodology would remain the 

same.

In the case o f the boundary representation limitation, the translation o f non­

compatible boundary representations to compatible boundary representations should not 

be a daunting task. Once converted to a compatible representation SPHINcsX would 

carry out the optimization with the geometry in the compatible representation. Once the 

optimization was complete, the resultant design would be converted back to the user’s 

original boundary representation.

Displacement Constraint
The extension to displacement constrained designs provides an illustration of

modifications required to overcome current limitations. While stress is a more local 

property (to the design variable), displacement is a global property. For example, looking 

at the cantilever beam shown in Figure 8.15, the region from the load application to the 

free end does not experience stress, however, the displacement increases to a maximum at 

the free end. So for any design variable in the non-stressed region, an attempt to decrease 

the displacement at the said design variable by changing the design variable’s value 

would be futile.
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Figure 8.15 Simple Cantilever Beam under Mid-span Point Load

Therefore for displacement constrained designs it is not enough to detect 

displacements at (and near) the design variable locations. So, at least, stress information 

must be detected in addition to deflection information. A first attempt at extending 

SPHINcsX to handle displacement constrained optimization would be to add one more 

detector message per control point, consisting o f displacement information. This would 

necessitate a modification of the classifiers to process the added displacement 

information. If this addition proved sufficient, the extended SPHINcsX could be trained 

to solve both stress and displacement constrained optimization designs.

8.4 Future Applications & Closure

Since the application of classifier systems to mechanical engineering is an embryonic 

field, there are many divergent paths that one could try to learn more about how best to 

leverage this partnership. The evolution of classifier systems is itself in its infancy. As 

research into ways of improving the CS’s learning capabilities are discovered, those who 

use the tool will reap the benefits.

One could argue that the CS is also computationally expensive due to the massive 

training necessary. There are high computational costs, but here again the CS benefits 

greatly from where those computational costs derive. First of all, the training is off-line. 

That is, training is performed beforehand. In industry, one would obtain a pre-trained 

system, thus avoiding the computational and time costs of the learning phase.
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Furthermore, there is no reason that the CS would not originally have good rules fed into 

it by experienced engineers giving it a much higher base from which to learn.

This research’s developments tested the classifier system’s mettle, however, now that 

the CS’s utility has been shown, avenues are available to enhance the overall optimization 

process. That is, an optimization methodology could be developed to symbiotically 

conjoin the salient features of SPHINcsX with other proven techniques. For example, 

smooth transitions and non-wavy boundaries are usually desirable characteristics for 

optimal designs, therefore design modifications could be biased or constrained towards 

creating such characteristics. Numerous other modifications could be evaluated to 

enhance the present complex.

This investigation has shown that the classifier system has a place in the mechanical 

engineer’s toolbox. Due to the power and flexibility of this tool, it is foreseen that the 

mechanical engineer will find a growing number of applications for which it may be 

leveraged.
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Appendix A 

Tabula Rasa Population

Note: All strengths are equal to 10.

#01##0 1 1#01###1#1 # :1 0 0 0 1 0  
0##1###0##1 1 0##1 1 # :0 0 0 0 1 1  
#0##1#01#0###10### :000101  
#01#0 0 ###0 #0 #0#1 1 1 : 011010 
#01#1####1######1 # :1 1 1 0 0 0  
1#11###0#1#0 0 #0 1 1#: 010011 
00#00#0######0 0 0 # # :100001 
#01###10110###1#0 # : 001110 
#1#1####0##0 ##0##0 :0 0 0 0 0 1  
1####0#011#0#0##1 # : 101111 
##01#0 ####0###1#0 # : 000101 
##0 0###1101######0 : 001110 
1#1##0 0 ##1#0 1 ##0 1 0 :101000 
10#1#0#0#0 1 1 0##1#1 : 101011 
10#1 1 011#####1##1 # : 011111 
#1#10####0 #######0 : 100110 
#1#####0 1 1 11010011 :101001  
0 ##1##1 ##00#1##1 # # :011100 
#1######1 # # # # # # # # # :001101 
1##1#1 0 ####1###1 0 0 :111010 
0 10###0 ####0##0 1 # # :110001 
10#0##11#1##1 ##### :011100  
1###1###0001####1 1 :1 1 1 0 1 0  
0##00#1111#0#1 1 0 # # :000101 
1#########0#1 0 1 # # # :101011 
1##11#####01###0 # # :100011 
##101####101##1 # # # :000011 
00#0 1 1#0###0####1 # : 001111 
##00##1##0####0 # # # :000000  
##100##0 #########0 :100111 
11#00#1 00##0#00#1 1 : 110001 
00#11#0 ##1#0 0 ###0 # :111001 
#1#0#000 0##0 # ##### :001010  
0 ####1#10##1 1#0 # # # :011010  
#111##0 0#00######1 :001011 
#####0##1#####0 # # # :011111 
00##0 #########1 0 0 # :100010 
##0##0 0#00####0#1 # :001011 
#01#1 0 0 0#0###0###1 : 010110 
#1#0 #1 0#010#1##1 # # :100000 
11#1###0#011#1###0 :11 1 1 1 1  
0 #####0 #10######0 0 : 100101 
####1#1 0 ##0###0#1 1 :100000  
#1##0#0 #######0 1 # # :010111 
##0#0#######1#1 0 1 # :101111 
#000###0 #1#0 #0100# :011001  
100##1#0 #0#####0#1 : 001000 
0 1####0 ##11##1 # # # # :110010 
10####0 #Q11####0#0 : 110100 
0#0011##1##1 0 0##1 # :000001 
# # C # # # # # # 0 # 1 # # # 1 # 0 : 1 0 1 1 1 C  
0#00#0 1#10#1#####1 : 00000.1 
0 1##0#####01####1 # :110111 
#0#####000##1 ##1 # # :000010 
0 1##1#0 ##01#1###0 # :110001 
000##0 #111#0####0 0 : 001001

##101#01#1##0#1 # # # :110001 
##1###10##0 #01#1#1 :110000  
111######1#10####0 : 000101 
10#0###10#1 ####1 #0 : 110111 
##000#00##1 11#0 # # # :111100 
0 00####11#0 1##1#1 0 :000010 
######0##0#######0 : 101001 
#1##1#######0 0 0 1 # # :000101 
00####111##1 1 0 1 # # # :000010 
####00#101#1#1#1 1 # :010000 
1###1#0##0#1#0 #1 1 # :011010 
11##0###1##11##1 0 0 :110101 
####1#######1#0 # # # :101011 
###0###0#11##0#0 # # :010010 
11#00#01##11#####1 : 010001 
1#1####11###11###0 : 110011 
0 ###00####0 ######1 :111000  
00101#0#0#00##1#1 # :000011 
##########0 ##1##10 :011111  
##1#11000######1## :101011  
##0 011#1#0 # # # # # # # # :101100 
#1##10##011###0##0 :11 0 1 0 1  
#####0 01#10##0 1 # # # :010010 
#1###0#0 ##0 #####0 # :110010 
0 #####1##1101###0 0 :011111 
0 #0##0 ##011####### :111100  
###0##0##1##1 0 1 # # # :110111 
#1#100#0 #110#1 0 # # # :110111 
0 #10#0 #1#1###00#0 # :000010 
0 ####1###00101#1 # # :001011 
#########01100#1 1 # :010110  
1 ##1#1##1###01#1 # # :1 00111 
#01##10#1###0 # # # # # :111101 
11#1#00##1#10#1 1 0 1 :110001 
0 ####1##000#0 ####1 :100100  
#0##1##########0 # # :111000 
1 #0##00#11######1 # : 000100 
1##111101#1##10##1 : 011000 
##0#1U#1###0 #1##1 :000100 
#10#0#0##0####1 1 # # :011100 
##0####1##00#1##0 1 :101111 
1#####0#####0 1 0##1 :111111 
####0##1#1#11###0 # :011101 
0 0#0 0#1#10##00##0 # : 010011 
##0##11#1001###### :001100  
11##0#########0 # # # :101011 
##1####1###1#0#1#0 : 111100 
##0#0######0 01#1 1 # :101111 
10100*0#1###«1#1 0 # :1 0 1 111 
#00#####1######0#0 : 111100 
##0##1##100#11###0 :011111  
1#0###01##1##1#0 # # :110010 
#########01##1##0 # :0 10110 
#####0#####1####1 1 :110010  
1##1#000#1100####1 :111011 
010#01#1#1#####1 # # :110110

0#####0 ##110#1 1 0 0 1 :100010 
1####11#0 01####0 0 # :111101 
#0#1#0 ####0 ###1#0 1 :110100 
10##0#0 1##1#0#1 # # # :001000 
######1#0#####01#1 : 000011 
####0 1#0 #1#0 # # # # # # :010111 
##0#0 ######1#0#1 01 :001001  
00#0#10##0##0###1 # :111110 
###0#0#1#1#0#####1 : 001110 
00#####1###0##1 1## :001001  
###0##1#0#######1 0 :010111  
######0 0#11####1 # # :111111 
0##########01##1 # # :111000 
1011#0##1##0#1#1 # # :011111 
###1#1#######10#1 # :01 1 1 1 0  
#01####0 0#0#00##1 1 :01 1 1 0 0  
1######00#0#1#0 # # # :010000  
0##1#00 1 # # # # # # # # # # :101010 
#1##11#####0 ##1 010 :101001  
#1##1 11##0###10##0 : 101000 
#0#10##00100#0#0#0 : 100011 
100###1##0##11###0 : 001001 
###0 1####1#01 0#0#0 : 000111 
###0 #011#1###011#0 :0 1 1 1 0 0  
#0# #######00*11## #.-001000 
######01###0##10## :101111  
1011#########01#1 # :011100 
#0#0 0 1######01#1 0 # :100011 
##1###1011#0#####1 :110110  
1#1#0 ###010######1 : 111011 
00110111#0 0 # # # # # # # :000001 
#0#0 1#00##01001#1 # :111010 
1#01#####10##1###0 : 110001 
#0#####0##1####0 0 # :110001 
0##0 #11######000## :011111  
##0###00011##1 # # # # :010001 
#001#0###1##0###0 # :100100 
#1####1###0 #11##1 # :000011 
1#01000######1####:111101  
####1##11######1#1 : 011101 
0#001#1#0 1 0#1 0 # # # # :010111 
##100000###0##0 #0 # : 101011 
100########0##11 1 # :110010 
########0 ####0##0# :001111  
1##11#1###1####0 # # :111001 
#10######1#10##0 # # :001111 
0#00010####1##1##0 : 101001 
###1#0##1######0#1 : 000101 
#0 #1##01###1##0 # # # :110000  
#1##00###01##1#0## :000001  
###0####0 #10#####0 : 111010 
###0 #1######1#0##1 :100000 
0###0 #0#1#0 0 1 1 # # # # :111100 
11#11####1#1#0 0#1 # :100110 
0##0#000###011110#:000101  
##000#0#11###1#1 0 # :101100
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0 # # # 1 # 1 # 0 0 1 # # # 1 # # # : 1 0 1 1 0 0  
# 0 # 1 # 0 # # 0 0 # # # # # # 0 1 : 000 0 0 1  
1 # # 1 # 1 # # # # # # # 1 # # 0 # : 0 0 1 1 1 0  
1 # # # 1 # # # 0 0 0 # 1 # # # # # : 111 1 1 1  
# 1 # # # # # 1 # 1 0 1 # # # # # 1 : 1 00 1 0 1  
# 0 # # # # # 0 # # 0 0 # # 1 # # # : 0 0 1 1 1 0  
# # # 0 0 1 1 * 0 0 0 1 0 # # # # # : 1 1 1 1 1 0  
# 0 0 1 # # 0 # 1 # 0 # # # # 0 0 1 : 110 1 0 0  
1 # # 0 1 0 # # # 1 # # 0 # # # 0 1 : 101 1 1 0  
# # # 0 # # # 1 # # # # # # # 0 # # : 1 01 1 0 0  
1 1 # # 1 0 1 # # # # # # # # 1 # 1 : 111101  
0 # # # 0 # # 1 # 0 # # # 1 # 0 1 # : 1 1 0 1 0 1  
# 0 0 # 0 0 # 0 0 # 1 1 # # # # 0 0 : 111111  
# # # # 1 0 # 0 # 0 # # # 1 # 0 0 # : 010101  
#oi#i###o#u#######:Oiono 
1 # 0 # 1 # 0 0 1 # # 0 # # 0 # # # : 000 1 1 1  
# 0 # 1 # 1 # 0 # # 0 # 1 1 1 0 1 # : 001 0 1 1  
# # # 0 0 # 1 # 0 # # 0 # 0 1 # # # : 1 0 0 1 0 0  
# # 1 # # # # 1 # # # 1 # # # 0 1 0 : 0 0 0 0 0 0  
0 # # # 1 0 1 # # # # # 0 0 # 0 0 0 : 0 01 0 00  
0 1 # # # # # # # 0 0 0 0 1 1 # # # : 0 0 1 1 1 1  
0 1 # # # # 0 # # # 0 # # # # # # 1 : 0 1 1 1 0 1  
1 # # # 1 # 1 # # # # 0 # # 0 # 0 0 : 111001  
# # 0 0 # 1 # # 0 0 0 # # # 0 # 0 0 : 000101  
0 # 1 0 # # # 0 # # # 0 1 0 1 1 # # : 000 0 1 0  
# 1 1 0 1 # # # # # 1 # # # 1 1 0 # : 0 1 0 1 0 0  
# # # # # 0 # 0 1 # # 1 # 0 # # 1 # : 1 1 1 00 0  
# 0 0 0 1 # 1 0 1 0 # # # 0 1 # # 0 : 1 0 1 1 0 0  
# # 1 # 0 # # # # # # 0 1 # 1 # 0 1 : 101001  
1 # # # 1 # 0 # 0 # 0 1 1 1 # 1 # 1 : 110100  
1 # # 1 0 1 # # 1 # # # # 1 # 1 # # : 010 0 0 1  
# # 1 # 0 # 1 0 0 # 1 1 0 # # # # # : 1 10100  
# # # 1 # # # 1 # 1 # # 1 0 # # # # : 0 1 0 0 1 0  
# 0 # # # 1 # 1 1 1 # 1 # # 1 # # 0 : 100010  
# # # 1 # # # # # # 1 # 1 # 0 1 0 # : 1 10 0 1 0  
# 0 1 1 # 0 # # # 1 0 # 0 # # # # # : 0 00 1 1 0  
1 # # 1 1 # 1 # 0 # # # # 0 1 0 # 1 : 110010  
# 1 1 # # # # # # 0 0 # 1 1 1 0 # # : 0 1 0 0 0 1  
1 1 # # 0 1 1 0 # 0 # 1 # # 0 # # # : 001 0 0 1  
0 # # 0 # 1 # 1 # 0 # # # 1 # 1 0 # : 0 1 0 0 1 0  
0 # 1 0 # # 1 # 0 # # # 1 * 0 1 0 0 : 0 1 0 0 0 0  
1 # 1 # 1 # # 1 0 # # # # 1 0 1 # 0 : 0 10 0 1 1  
0 1 # # 0 1 1 # 0 1 0 1 1 # # 1 # # : 0 11 1 11  
1 # # # # # 0 1 # 1 # # 1 # 0 0 # 1 : 0 1 0 0 1 1  
# 1 # # 0 # # # 1 # # 0 0 # 0 # 1 # : 110101  
0 # 0 # 0 # 0 # 1 # # # # # # 1 # # : 011 0 0 0  
# # 0 0 # # # # # # 0 1 # 0 # # 1 #  -.010100 
0 # 1 # 1 # # # # # # 1 # # # # # 1 : 101111  
# 0 # # # l # 0 1 # # l l # i # # # : 101110  
# # # # # 1 * 0 # # 0 # 0 0 1 1 # # : 011 0 0 0  
0 i # # 1 0 1 # l # l # # 1 1 1 0 # : 11 1 0 1 0  
# # 0 # # 0 # # # # # # # 0 # # # # : 100110  
# 1 1 # # 1 # # 0 # 1 1 # 1 1 # # # : 000111  
# 1 0 # # # 1 # 1 1 # # 1 1 # # 1 # : 00 0 1 1 1  
# # 0 1 # 0 # 1 # 0 # 1 # # # # 1 # : 1 1 0 11 0  
1 # # 1 # # 1 0 # 1 1 # # # 1 # # 0 : 100100  
# # 0 # 0 # # 0 0 # 0 1 1 # # # # # : 1 1 1 1 1 1  
# 0 0 # # # # # # 0 0 1 # # # 0 # # : 000 0 0 0  
# # 1 1 # # # 1 # 1 1 0 1 1 # 0 # 0 : 1 01 00 0  
# 0 # 1 1 # 1 # # 0 # 1 1 0 # # # 1 : 000 1 0 0  
0 0 # # # # # 1 1 0 # # # # # # # # : 1 0 0 1 0 0  
# # # # # # 1 0 1 1 # # 1 # # 0 # # : 0 1 01 1 0  
0 # # # 0 0 # # # # # 0 # # 0 # # 0 : 0 1 0 0 0 U  
#0#0###0#1 1 1010*10:001100 
# # 1 # 1 # # # # # # 1 # 0 1 # # 0 : 111110  
1 # # 1 # # 0 1 # # 1 # # # # # 1 # : 0 1 1 1 1 1  
# 0 1 1 0 0 # # # # # # 0 1 # 0 # # : 100101 
0 1 # # # « # # # 1 0 # 0 1 # # # # : 0 0 1 1 0 1  
1 0 1 1 # 1 0 0 1 # # # # 1 0 # # 1 : 0 1 0 1 1 0  
0 # # # # # 1 # # # 1 # 1 1 0 # # 1 : 1 1 0 10 0  
# # 1 0 0 1 # # # 1 1 # # # # # 1 0 : 0 1 0 1 0 0  
# 1 0 # # 1 1 # 1 # # # 1 1 # 1 0 0 : 1 1 C 1 1 1  
1 # # # 0 # U # 0 # # # # # # # 1 : 110010

00###1#####1 0 1 0 # # # :001011 
10###1#10#######0 # : 101000 
##1#1##0##0 #####0 # :010101 
0 ####0####0#001##0 : 001100 
1#01#######1 1 0 # # # # :101000 
##1#1###1##1##1#1 0 :110010 
111#0 1###0 #0#####1 : 101000 
1##01#1 #000####0 # # :101001 
011001###0 0 # # # # # # # :100011 
0 ##0 0########0#0 1 1 :110100 
########10 1##1 1 # # # :100010 
0 ###1#0 0 0#11###0#0 : 101101 
#11#1 01##1##01##0 # :000101 
#######11####00#1 0 : 100101 
#1#1 #####1 1##1#1 # # :010010 
##1##0###0###101#1 : 011010 
00##10####11#0 1 # # # :011111 
###0 1#0 1 1 0 0#00#1#0 : 000011 
01#######11 1 1#0##1 : 000010 
##0 #10###0##0##0 1 # :001001 
##1#00 1#00#00##1 1 1 :000001 
111##########1 0 # # # :010010 
##0 0##0 #1110##0#1 # :010011 
0 #0###1 #01#0#0##0 # : 100010 
0 ###0#1#0 0###0 ##1 1 :001111 
#0###0 0 ##0 #111##0 # :000101 
10#0##0 ##0 #1##1##1 : 101001 
###0 ####01##0####1 : 101101 
######1 #0001###1 0 # :110110  
####10###0 0#####1 # :110011 
##1#0 1 0###1##1#0 1 1 :100011 
0 #0##0##01 1 10###0 # :010000  
1 ###0 ###1#10##0 1 0 # :001110 
0 #0#1###0 0 0##1 0 0 # # :101010 
##0 1#1#0#0 1 0#1##0 # : 111100 
#1#######0 ####0 1 # # :011000 
#001##0 #1#1###1 # # # :010110 
0 #####0 0 ####0#0 0 # # :111101 
11#0 #0 1 ##0###1#0 0 1 -.110100 
#110101####1##1 # # # :100111 
11#1 1#0 #########10 :011101  
1#0###0 ####1##1#1 1 :111011 
##0#####0#1#101##1 :00 0 1 1 0  
0 11#####0##1 1 1 # # # # :011001 
11##0 #####0 ##0 # # # # :001011 
##1###1 #01#100##1 1 :101011 
###1##1 1#####0#### -.011001 
###111#0###0##0 # # # :010010 
####0 ##1##0 0#1##0 # : 100000 
##0##1#0#0 #0 1 0#0#1 : 111011 
#0«1#1##101##«#1#1 : 111101 
#1##001101##0##0#0 : 010110 
#0###0####1##1#1 0 # :001001 
0 #00##1 #1######0#1 :010110  
#1#1Q#0 #11110#11#1 : 110100 
100#0###1######11# :011100  
##0####0 ###0 0 # # # # # :000001 
###1#0 1###11#1#1 # # :101111 
0 #0#####0 01#0 0 0 1 0 0 :110101 
#]#1####0#1#####1 1 :101101 
0 ##11#1#0#1##00#0 # :011001 
###0#1#1####0 #0#0 # :01 0 1 0 1  
#1#####01#0 #1#0 010 :000111  
#1##0 1 0##0 #10010#0 : 010011 
11##0#0 ##10#1##10#:001111  
C # # # 0 0 # # # 1 1 0 # # # # # # : 0 1 1 0 0 1  
«1##««###1#01##0 # * :100011 
101100#1#0##1##0 1 0 :110001 
#01#####00######0 0 :G11101 
1###0 ####1##1#0#1 # :101011 
#0##0 «####«#01##1 1 :01 0 1U 
#11##0#«#0##0 1###0 : 000000 
1##1##10#0 0#0 1#1#0 :10 0 1 1 1

# 0 # # # 1 # 0 1 0 # 1 # # # # # # : 0 10 0 1 1  
# # # # # 0 # 1 0 1 # 1 # # # # # # : 0 10 1 0 0  
0000##0#1 ###1 1 0#1 0 :010001 
1 0 # # 1 # # 1 1 0 # # # # 1 # # # : 0 1 1 0 1 0  
# 1 # 1 # 1 0 # # # 0 # # 1 # 1 # # : 1 10 1 0 0  
# # 1 1 1 0 1 # # # 0 1 1 # # # 0 # : 1 00101  
#0#1##00#1 1 0#1 0 1 1 0 :001000 
0 0 # 0 0 1 # 0 0 # # 1 1 # # # # 0 : 1 01 0 1 0  
0 0 1 0 1 0 # 1 # # # # 0 # # 1 # 1 : 1 10 0 0 1  
# # # 0 # # # 0 # 0 # 1 # 0 # 1 # # : 0 00 1 00  
# # # # # # 1 # # # 0 # # # 1 # # # : 0 00 1 0 0  
# # # # # # 1 1 # 1 # # # 0 # # # # : 0 00 0 0 1  
# # # # 1 # # # # # # 1 0 # 0 1 1 0 : 0 10001  
# # # 1 # 0 # # # 0 # # # 0 # # # 0 : 1 10111  
# # # # # 1 1 0 1 # 1 # # # 0 1 # 0 : 0 00 0 1 1  
1 0 # # # # # # # 1 # 1 1 # # 1 # 1 : 000 0 1 0  
0 1 # # # 0 # # 0 # # # # # # 1 # 1 : 1 01110  
1 # # # # # # 1 1 # # # # # # # # 1 : 0 1 0 0 0 1  
# # # # # 0 1 # 0 # 0 1 0 0 # 1 0 0 : 1 00101 
# 0 1 # # 1 # 0 # 0 1 # # 1 # # 0 # : 0 01 1 0 1  
0 # 1 # # # 1 # 0 1 # 0 # 0 1 0 # 0 : 1 11101  
# 0 0 # # # 1 # 1 0 0 0 0 1 1 # # # : 0 1 0 0 0 1  
# # 0 # # # # 0 # # 1 # # # # # # # : 0 00 1 1 1  
1 # # 1 0 # 0 # # # # # 1 0 0 # 1 0. -101000  
1 0 # 1 # # 0 0 # # # 1 # 0 # 1 0 1 : 1 11000  
# # 0 # 0 # # 0 # # 0 # 0 0 1 1 # # : 0 10101  
# 1 0 # # ## 0 01 1# # #1 0 ## - .  011 0 1 1  
0 # 1 # # 0 # 1 # # # # # 1 # 0 # # : 0 1 1 0 0 1  
# # # # 1 # 0 # # # 1 # # # 1 # # # : 1 00001  
1 1 # # # 0 0 # # # 1 # # 0 # # 1 0 : 1 00011  
# 1 # # 1 # # 1 # # # # 1 # # # # # : 1 00 1 1 0  
1 # # # 0 # 1 0 # # # # 0 # # # # # : 0 00 0 1 1  
# 0 # 0 0 0 # # 1 # # # # # # # # # : 1 01011  
0 0 1 # # # 1 # # 1 0 1 0 1 # # # # : 1 1 1 0 0 0  
# 0 1 # # # # 0 # # # 0 0 0 # 1 # 0 : 1 10001  
# # # 1 0 # # # # # # # # 1 # # 0 0 : 0 1 1 1 0 1  
0 # # 1 1 # # 1 0 # 1 # # # 0 # # 0 : 1 00110  
# 0 1 0 1 # # 1 # 1 1 # 0 # 1 # # 0 : 0 11011  
l # # l # # # # # 0 1 0 0 # t # # # : 110101  
1 # # 1 # # 1 0 1 0 # 0 # # 1 # # 0 : 0 10 0 0 1  
1 # # # # # # # 1 0 # 0 # 1 # 1 # 0 : 1 01 0 0 0  
0 1 # # 0 0 # # 1 # 0 1 0 0 0 0 0 # : 0 10 1 0 0  
0 # # # 0 # # # 1 0 # # 0 # 1 # # # : 1 00010  
# # # # # 1 0 # 1 0 1 # 0 # # 0 # 1 : 0 10 1 00  
# # 0 # 0 # 0 1 1 1 # 1 0 # 0 # 0 # : 1 10001  
# # # # # # 0 # # # 0 # # 1 # 0 # 0 : 0 01 0 0 0  
# 0 # 1 # 0 # 0 # # 1 # 1 1 # # # # : 1 1 1 1 1 1  
1 # # # # # 1 # 0 # # 1 # # # # # 1 : 1 0 0 1 0 1  
0 0 # 0 # 1 # 0 0 # # 0 # # 1 1 0 # : 1 0 1 1 0 0  
1 # 0 # # # 0 # # 0 0 # # # # # 1 # : 0 10 1 00  
1 0 1 # # 0 # # # # # 0 # # 0 # # # : 0 00001  
0 # # # 0 1 # # # 1 # 1 1 # # # # # : 0 10 0 1 1  
# 1 0 0 # 0 # 1 # # 1 # # 0 1 1 0 # : 0 1 1 0 0 0  
0 # # 1 1 0 0 1 # # # # # 0 # # # # : 1 11110  
# # # # 0 0 # # # 1 # # # 1 # 1 # # : 0 1 1 1 1 1  
# 1 * # 0 # # 0 # # # 1 0 0 # # 0 # : 0 11 0 0 0  
# 1 # 1 # # 0 1 # 0 # 1 1 # # 1 0 1 : 0 10011  
1 # 1 1 0 0 1 # # # # # # # # 0 # # : 1 00101 
1 1 1 # # 0 # # # # # # # # # 0 # 0 : 1 00111 
# 1 # 1 # # 0 0 1 # # 0 # # 1 # # # : 1 11110  
# # # 0 1 0 # 0 0 # # # # 0 # 0 # 0 : 1 01011  
1 # # 0 0 0 0 0 * 1 1 1 # # 1 0 0 # : 0 1 0 0 l i  
# U # 1 # # 1 # # # U 0 # 1 # # :  010001  
# # 1 # 0 # # 1 # # # 1 # 0 1 0 # 1 : 0 10101  
1 1 # 0 # # # # 0 0 # # 1 # # # # # : 1 0 11 1 1  
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##0#0##0 0 ##0#1 # # # # :001011 
##01#1##01 111#0 # # # :110111 
####111###01##10## :111011  
# 1 # 0 1 1 # 1 # 1 # # 0 0 0 # C # : 1 10111  
##0##1###0##0 ##0 0 # :011101 
###G0#0 1#1####1### :011001  
0#011#01####0##0 # # :101010 
1 # # # # # 1 0 0 # # 1 # # # 0 1 0 : 0 1 1 3 1 1  
#1#10##0##1##0###0 : 111111 
#1#0#0###10#######:100010  
# # 1 0 # 1 # C # # # # # # # 1 # # : 1000 1 0

# 1 # 0 # 1 # 0 0 # # 1 1 1 # 1 # # : 1 00 0 0 0  
# # # 1 0 1 # 0 0 0 # 1 # 1 0 # 0 # : 1 11 1 0 1  
# # # # # # 0 # # # 0 # 1 # # # # # : 1 01 0 0 1  
# # 0 # # 1 1 # 0 1 1 # # # # # # 1 : 0 0 0 0 00  
# # # # 0 # # # # # # # 1 # 0 # 1 1 : 1 11 0 1 1  
# # # 0 # 0 # # # 0 # # # # # # 0 # : 1 01 1 0 0  
# # 1 0 1 1 0 1 # 1 # # # 0 # # # # : 1 1 1 1 1 0  
# 0 1 # # 0 0 # # # # # # 1 1 # 0 1 : 1 11 1 00  
# 0 # 0 # # # # # 0 0 1 # # # # 0 # : 1 10 0 0 1  
0 # # # # # # # # 1 # 1 0 # # 1 # # : 0 00 1 11  
# # 0 # 0 # # 0 0 1 0 # # # # 0 1 1 : 0 1 0 1 0 1  
0 0 # # # # # 0 # # 0 # 0 # 1 0 # 0 : 1 00 1 0 1  
# 1 1 1 # # 1 # # 0 # # 1 # # # # 1 : 1 01 0 1 1  
# # # 0 1 1 # # # # # # 1 1 # # 0 1 : 1 10 1 1 1  
# # # # # 1 # 1 # # 10 0 0 # ## # - . 1 0 0 0 11  
0 # # 1 # # # # # # # # 1 # # 1 # 0 : 0 10 1 1 1  
# # # 0 # # 1 # 1 0 # # 0 # # # 1 1 : 0 0 0 0 0 0  
1 0 1 # # # # # 1 # # # # # # 0 # # : 1 1 1 1 0 0  
0 0 # # # 0 0 # # # # 0 # 1 1 0 # 1 : 110 1 0 0  
# # # # 0 0 # # # # # 1 # # # 0 # 1 : 1 01 0 0 0  
# 1 1 0 0 # 1 0 # 0 0 # # # 1 # 0 # : 1 00 0 0 0  
# 0 1 # 1 # 0 # # 0 0 0 # # # # 0 # : 1 10 0 0 0  
1 # 1 1 # 1 # # 0 # # 1 # 1 0 # # # : 0 10 0 00  
1 # 0 1 # # # # # # # 0 # 0 # # 0 # : 1 00111  
0 # 1 # # 1 0 # # 0 # # # # 0 # # 0 : 1 00 0 1 0  
# 1 1 # 1 0 0 1 1 # 1 0 0 1 # # # 1 : 0 0 0 1 1 0  
# # 0 0 0 0 1 # 0 # # # # 1 # # 0 # : 1 10 0 0 0  
# # # # # 1 # # 0 1 # 1 # # # # # # : 0 10 0 1 0  
# # 1 # # # 1 0 # # 1 0 # 1 # 0 1 1 : 1 01 00 1  
1 # # 1 # # 0 # # 0 1 # # 0 # # 0 # : 1 11011  
# # # # # 1 0 # # # 0 # # 1 # # 1 # : 1 01 1 0 1  
1 0 # 0 0 # 1 0 # # # # 1 0 1 # 1 # : 1 00 0 1 0  
1 # # # 1 # # 1 # # # # # # # # 0 1 : 1 00 11 1  
# 0 # 0 0 # # # # # 0 # # # # # 0 # : 0 0 0 1 1 0  
0 1 # 1 0 # 0 0 1 # # # # # 0 # 0 # : 0 01 1 1 1  
# # # # # # # 0 # # # 1 # # # # # # : 1 1 0 1 1 0  
0 1 # 1 0 1 # # # # 1 # # # # # # 0 : 1 0 0 0 0 1  
# 0 # # # 0 # # # 0 # # 0 # 0 0 # 1 : 1 0 1 1 1 0  
1 1 1 1 # # # 0 # # 0 # # 1 0 # 0 # : 1 1 0 0 0 1  
# # 0 # # 0 1 0 0 # U 1 # 0 # 0 1 :  010 1 1 0  
0 # # 0 1 # # 0 0 # 1 # # # # 0 0 # : 0 1 1 0 1 1  
0 # # # 1 0 # 1 1 # 0 # # 0 0 # 0 # : 0 10 01 1  
0 1 # 0 0 # 1 1 # # # # 1 # 0 # # # : 0 0 1 1 1 1  
1 0 # 1 # # 1 0 # # # # # 1 0 1 # # : 1 11010  
# # 1 # 1 1 # # # 0 # # # # # # 0 # : 110101  
# 1 # # # # 1 # # # # 0 # # # 1 # # : 1 00 0 1 0  
1 # # # 0 1 # # 0 1 # 0 # 0 # # 1 1 : 1 0 1 1 1 0  
# # # # 1 # 0 0 1 # 0 # 1 # 0 # # # : 0 00111  
# # 1 # # 1 0 # # # # # 0 1 # # # # : 0 00001  
# # 0 # # # 0 # # 0 1 # # # # # # # : 0 0 1 1 0 0  
1 0 # 0 # # # # 0 # 1 # 0 # 0 1 0 0 : 1 00001  
# 1 # # # 1 1 # # # 1 1 1 0 1 1 # # : 1 11011  
1 # 1 0 # 0 # # 0 1 1 0 # # 0 # # 1 : 1 10100  
# 1 # # 1 # # # 1 # 0 1 1 1 0 # 0 # : 1 0 11 1 1  
1 0 # # 0 1 1 0 1 1 # # # # # 1 # # : 1 1 01 11  
0 # # 1 # # 0 1 0 0 # # # # # 0 # 0 : 0 1 0 1 1 0  
# # # # 0 1 # 1 0 # 1 # # # # # 0 # : 0 01 1 1 0  
#### # 1 0  # 0 # 1 U  00 # # 0 : 0 1 0 0 1 1  
# 1 0 1 # 0 # 0 0 0 # # # # # # 1 # :  111000  
# 0 # 0 1 # 0 1 # # 1 # # 0 # # # # : 10 0 1 1 1  
# # # 1 # # # # 0 0 # 1 # 0 # # 0 # : 0 11 10 0  
# 1 # 0 0 # # # # # # # 0 0 1 # # # : 1 0 1 1 1 1  
1 # 1 # 1 # # 1 # # 0 # # # 1 # # # : 001 0 0 0  
# # # # 0 # # # # # # # # 1 # # 1 # : 110311  
0 # 0 1 1 # 1 1 0 # # 0 # # # 1 0 1 : 0 1 3 1 0 0  
0 0 0 # 1 # # # # # # 0 1 # # 0 # # : 0 1 1 0 1 0  
1 # 0 # 1 1 # # # 1 0 # # # # # # 0 : 0 0 0 1 0 1  
1 1 1 # # 1 # # # # # # # # # # # 0 : 0 00 0 1 0  
# 0 # # # # # 0 1 # # # # # 1 0 # # : 1 01010  
0 1 # # # # # # 0 * 1 # 0 * 1 # 0 0 : 1 0 1 1 0 1  
0 # # # # # 1 1 U # 0 1 # # 1 0 1 : 0 0 1 1 0 0  
# 0 # # 0 1 0 # # # # # 0 # 1 # # # : 0 11 0 1 0  
1 # # # 1 # # # 0 # 1 # 0 0 # # # # : 1 3 1 0 1 0
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# 1 1 1 # # 1 # # # # 0 # # # 0 0 # :  100 1 1 1  
0 1 # # 1 # 1 # # 0 # # # 1 1 1 0 1 :  0 0 0 0 00  
0 # 0 # # # # # # # # # # # # # # 0 : 0 1 0 0 0 1  
0 # # # 0 # # # 1 # 0 # 1 1 0 # # 1 : 0 1 0 0 01  
# # 1 # # # # # # # # # # # # 0 1 # : 0 0 1 10 0  
0 # 0 # # # # # # # 0 # 1 1 0 0 # 0 : 1 10 1 1 0  
1 # 0 # # # # 1 # # 0 1 1 0 0 # 1 # : 1 0 11 0 1  
# # # # 0 # # # # # # 0 # 1 1 # 1 # : 1 0 0 1 0 0  
# 1 # 0 # # # # 1 # # # 0 1 0 # # 1 : 1 11 0 0 1  
1 # # # # 0 1 # # # 1 0 0 1 1 # 0 # : 0 0 1 1 01  
# 1 1 # 1 # # # # 0 # # # # # 1 0 0 : 1 0 1 0 1 0  
# 0 # 0 # # # # 1 0 # 0 # 0 0 # # # : 1 100 0 0  
# 0 # 0 1 # # 1 # # 0 # # # 0 # 1 0 : 1 00011  
0 0 # # # # # 0 1 1 # # # # # 0 1 # : 0 1 1 1 1 0  
# 0 1 # # # # # 1 # # # # 0 # # 1 1 : 0 0 10 1 1  
# 0 0 0 # # 0 # 0 # # 0 # 1 # # 1 # : 1 0 1 0 1 0  
# # # 1 1 # 0 1 1 # 1 # # # # # # # : 0 1 00 1 1  
0 # 0 # 0 # 0 1 # 0 0 1 # # # # 0 0 : 0 0 0 0 1 0  
# 1 # # # # # 0 # # 0 # 0 1 # # # # : 0 1 0 0 1 0  
# 1 # 0 0 1 1 # # # # # # # # # # 0 : 0 0 00 1 0  
# # # 0 # 0 # 1 0 0 1 # 0 # # # # # : 1 001 0 0  
# # # # # 0 # # # 1 # # # # # 0 # # : 1 10101  
# 1 # # 1 # # # # 0 # 1 # # # # # 1 : 0 0 1 1 0 0  
0 # # 0 0 # # 1 # 1 0 # 1 # # # # # : 0 11 0 1 1  
# # # 1 1 0 # # 0 # 1 # # # 1 1 # # : 1 1 0 0 0 0  
# 1 1 1 # # # 0 0 # # 0 # # # 1 0 # : 1 00 1 1 0  
# 0 # 0 1 # 0 # # 0 0 0 0 0 # # # # : 1 0 1 1 1 0  
0 # # # # # 1 # 1 # # 0 0 1 1 0 0 # : 1 10 1 0 0  
0 1 0 1 # # 1 0 # # # # # # # # 0 # : 1 0 1 0 0 1  
# 0 1 1 # # # # # # # # # 0 0 0 # # : 1 1 0 1 0 1  
0 # # # # # # # # 1 # # 0 1 # # 0 # : 0 0 0 1 0 1  
# # 1 # # 1 0 # # # 0 1 # # # 1 # # : 1 0 0 1 1 0  
# # # 0 0 # 0 # # # # # # 1 # # # # : 0 00 1 0 1  
1 0 1 # # 1 # # # 0 # # # # # # 0 1 : 1 1 0 0 1 1  
# # # 1 1 1 1 0 1 # 1 0 0 # 1 # # 1 : 1 01 1 1 1  
1 1 # 1 1 # 0 # # 0 1 # # # 0 # # # : 0 0 1 0 0 0  
# # # # # # 1 # 1 # # # # 0 1 1 # 0 : 1 1 0 1 1 1  
# # # # # # 1 # # # # # # # # # # # : 1 1 0 1 0 0  
# # # # # # # 0 # # 0 0 # # # 0 # # : 0 10 1 1 1  
# 0 # 0 # # # # # # # 1 # # # 1 0 0 : 1 01011  
1 1 # # # # 0 0 # # 0 0 1 # 0 1 1 # : 1 1 0 1 1 0  
1 1 1 # 0 # # 1 # # 0 0 # 0 1 # # 1 : 1 11 0 0 1  
0 1 # 0 # 0 # # 0 1 # 0 # # 1 # # # : 1 00 0 0 1  
# # # # # 0 0 # # 0 0 # 1 1 # 1 0 # : 1 00001  
1 0 # # # # 0 # # # # # 1 0 0 1 0 1 : 1 00 0 0 1  
0 # 0 # # 1 # 1 # # 1 # 0 0 # # 1 # : 0 1 1 1 0 0  
0 # # # # # 1 1 # 1 # # 1 # # # 1 0 : 0 10 0 0 1  
# # 0 # # # 1 0 1 1 # # # # # 1 0 # : 1 0 1 1 0 1  
# 1 # # # # 0 # 0 # 1 # # # # 1 # 1 : 1 0 0 1 1 1  
0 1 1 1 # # # 1 # * # # 1 0 # 0 # # : 1 00 1 1 1  
0 1 1 # # # # # # 1 0 1 # 1 # 0 # # : 001 0 0 1  
1 # 1 # # # 0 # # 0 # # # 1 # 0 # # : 0 0 00 0 0  
0 # 0 1 # 1 # # # # # 1 # # # 0 # # : 1 010 1 0  
# # 0 1 # # # # # 0 # # # 1 # 0 # # : 1 0 1 1 0 0  
1 # 1 1 1 # 1 # # # # # 1 # 0 # 0 # : 0 01 0 1 1  
# # # # # # # 0 # 0 # # # # # # 0 0 : 1 11011  
1 0 # 0 # 0 # # 1 # # # 0 # # 0 # 1 : 0 1 00 0 0  
# # # # # # # # 1 0 # 1 1 0 1 # 1 # : 1 00 11 1  
0 # # # # 1 0 1 # 1 # # 1 0 # # # 1 : 1 01101  
# l # l t r # 0 # # # l # 0 # 0 # l l : 1 0 1 0 0 1  
0 1 # # # 1 # # 0 0 # # 0 0 # # 1 # : 0 1 1 0 1 0  
# # # # # # 1 # 1 # 0 # 0 # 0 # 1 1 : 0 1 1 0 0 1  
# # * # # # 1 1 # 0 # # 1 1 # # # # : 0 1 1 0 0 1  
# 1 0 # # # # 1 # # # # 0 1 1 # # 0 : 0 1 1 0 1 0  
# # # # # # # # # # 1 0 # 1 0 # 0 1 : 1 1 0 1 0 0  
# # # # # # 0 # 0 1 # 0 0 # # # 0 # : 0 11101 
1 # # 0 # # # # # # # 1 0 # # # # # : 0 00001  
# 0 # 0 1 0 # 0 0 # # 1 # 1 # 1 # # : 0 0 0 1 0 1  
1 # 1 0 # # # 0 0 # # # 1 0 0 # # # : 0 0 1 1 0 1  
# # 1 0 # 0 # # # # 0 0 # # 0 # # # : 0 0 1 1 1 0  
# # 0 # # # # # 0 # 1 # # # 1 0 # 1 : 1 00101  
1 # 1 # # # 1 1 1 0 1 # # # # # 1 1 : 0 1 0 0 0 1  
# # # # 1 # 0 # # 1 1 # # # # 0 # 0 : 1 000 0 0

0 1 ###0####0###1#0 # :011101 
1###010####0 0 1###1 : 010110 
0 #0###1##10##1##1 # :111001 
###1#1###10#0 ####1 : 100100 
00#######00##1 1 # # # :011001 
0 0 1##1#1 #1##1####1 : 000011 
#1 0#0 #0###0####10#:001011 
###1#0####1#11#0#1 : 000101 
#1###1#1 1##0 #0 # # # # :101011 
###1#100####0 11#1 0 :010000 
#0 ##10#1##1#####1 # :101001 
##1#111100##0 0 # # # # :111000 
#0 ###1010###1 1 0 # # # :100101 
###1#####01##0 1 1 1 # :000111 
11110###01#1#1 0 # # # :111001 
###100#1##0####1 0 # :101001 
1 1##1#0 1###1#10#1 0 :100111 
0######0 1#1#01##1 # :000111 
0#####0 1##1##0 1 # # # :000010 
###1#0###1###1 0 0 # # :000001 
##0#101##1#####1 0 # :101101 
########1#0#0#0#0 # :010011 
###01###1##1 ##1 #0 1 :011100 
#0 0##0###0#0 1#1 0 # # :111010 
###1#1#01 1###1 # # # # :100001 
0 0 #1#0#####1#####1 : 000010 
1#1#####011##0 #0 # # :000111 
##11####0##0 #1 0 # # # :011001 
#1####1##01#######:011000  
11##00###00###1#0 # :101011 
#0 1 ##01###1#0##1 1 # :001101 
1#########11####0 1 :111111 
0 ##01#0 0 1#1 0 # # # # # # :100101 
###1#10###1###10#0 : 110101 
#####11#1100#0 ##0 # :110100 
#1##0###0 ###101##1 : 111010 
0 ######1#00#11#1 1 1 :110011 
#0 #0##10000##1 1 0 # # :100000 
#1#1#####0 ###0 #0 # # :100000 
#1 0#####0###0#1#1 # :100111 
1#1#####1##0 #0##1 # :011011 
#0 #0#####0##0 1 1 # # # :001010 
1###1110##00#0 # # # # :110010 
00##1######0####1 # :110000 
0#010##1#####10#1 0 :010001 
#0#1######1#1#00#0 : 101111 
#0 ##010#0 1#0 #1#0 # # :100001 
###0#11#0 ###0#0 0 # # :001011 
#0 #1###1 0#01###11#:011001 
####0###0#######11:011110 
1#0 #10###1#0 #1 # # # # :111001 
###1##1######1 # # # # :011010 
10##1#11#0##0 0 # # # # :000010 
0 0 0 1##1######0 1 # # # :100011 
#1#0 #1##100####1 # # :100001 
##0 1 1#1##1##0#0 0 # # :101010 
#1#0####1#####1#1 1 :011110 
1 0##10####0#0##1#1:000011 
####0#1#0#0#1###00:010100  
##1101#101#0 # # # # # # :111001 
0#1###10####10#0 #1:001111 
######0#####C#1# # # :100111 
0 0 0 ##0##0 1######0 # :101001 
0###01######0#1#1#:010010  
###1###0##1 # # # # # # # :010011 
0#1#01##1 #0#######:001111 
1#0 #10##0 #0 1 1 0 # # # # :001110 
##000010#11#0 # # # # # :110101 
#0 #0#011##11#0###1 : 001010 
#0##0#00 0###0##1 1 # :010010 
###01###1 1#0##0 #0 # :000101 
1#0 0###1#0#1#0##1 # :101011 
10##0#0##01##1#0 # # :001010

#0 #00 0#1#00####1 0 # :110111 
#1######011#1###0 1 :101111 
#01##1####11000#0 # : 011101 
0#####1#0 1####1 # # # :011100 
#100#0 ###0##1 ##### :110010  
#0 ##0 1 #0######0##1 : 001111 
####1#0 1 0#1#0 1 # # # # :101100 
1##10#1 1 0 0 1 0 0 1 1 # # # :100001 
#0 #1#10########1 1 # :010001 
#1#####0 1##00 001#1 : 110010 
0#1####1 1 0 #0#110#1 : 101110 
####1 1##011####0#0 : 011010 
###1#######10####0 :100011 
#011###1101#1 1 # # # # :111011  
##0#1 #0#0 #1#1 0 # # # # :010000 
11#1#####1110#0##0 : 110011 
##0######1101#0##1 : 001111 
0100#0 #0#1#######0 : 101100 
#1###0 0 1 #10####1 1 0 :001100  
####0#1####0##101 0 :1 0 0  111 
#####0 0##01 1 0 1110# :100000  
01###0 1 1###0 1 1###1 : 011011 
###0######1##0 #1#1 :0 0 0 0 0 1  
##0####1101####1 1 # :011101 
##0 ##1 #####01#1#0 # :101110  
##1#0 1 #1####1 0##1 0 :001110 
####0 1 1 #####1 # # # # # :001011 
#1##0 #0####0# ##### :011101  
1###10 1 1###00###0 0 :000100
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Appendix B 

Detailed SPHINcsX Algorithm

Algorithm B .l: SPHINcsX Algorithm in Learning Mode

Initialization, Termination & Genetic Algorithm Modules

I. Initialization o f Classifier System (Chapter 5, Section 5.2)
• Set Initial population size & populace
• Setup Punishment/Reward
• Set Auction parameters
• Set taxes
• Set Genetic Algorithm & Triggered Cover Detector Operator parameters
• Set learning iteration, n, equal to 0
• Set epoch count, E, equal to 0

II. Initialization o f a design to be optimized (Chapter 5, Section 5.3)
• Initial Design model
• Boundary representation definition
• Global element length
• Upper & Lower limits on dimensions (if any)
• M aximum allowable von Mises Stress
• Set optimization problem iteration, equal to 0

III. Increment
• Set optimization problem iteration, equal to / + 1
• Set learning iteration, n, equal to n + 1

IV. IF learning termination criteria met, (Chapter 6 )
THEN terminate
ELSE continue

V. IF epoch completed (i.e. n mod Epoch length = 0)
THEN apply genetic algorithm to population

set epoch count, E, equal to E + 1 
continue 

ELSE continue
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VI. Continue to Optimization/Learning Loop

Optimization/Learning Loop

I. Analysis Module Iterations all (Chapter 2, Section 2.4.2)
Analyze the structure and determine the von Mises stress values at the control 
points, straddle points and interior points on the modifiable boundaries o f the 
component. Also determine the mass.

II.A. Feedback Interface Iterations / >  1 (Chapter 4, Section 4.5)
Read mass of design at iteration /

B. Apportionment o f Credit Iterations i > 1
Compare mass, stresses, and TNSE at iteration i & i-1. Determine if the 
design has improved or deteriorated, then appropriately reward or punish the 
one classifier that caused the most recent modification.

III.A. Detector Interface Iteration: 1 (Chapter 4, Section 4.3)
Read: Mass of component

Maximum allowable von Mises stress 
Limits on dimensions 
Global element length 

B. Detector Interface Iterations: all
Read: von Mises stress at control points

von Mises stress at straddle points 
von Mises stress at interior points 

Convert stresses to their binary representation 
Create environmental messages

IV. Auction module Iterations: all (Chapter 3, Section 3.1.2.1)
1) Check each classifier, determining if it matches any environmental messages.

As the classifier may match more than one, each match is recorded.
2) IF no classifiers matched in 1)

THEN apply the triggered cover detector operator (Chapter 3, Section 3.1.3)
Generate a classifier which matches one of the environmental 
messages. Set the generated classifier as the victorious classifier.
Skip to step IV.5 

ELSE continue
3) Have all the classifiers that matched in 1) compete in an auction to determine 

which one shall be permitted to execute its action. Factors that influence the 
winner include the classifier’s strength and how well it matched the 
environmental message (i.e. the more “#” symbols in a classifier the more 
general it is and the more poorly it matched the stress set).

4) Pass the action of the classifier that won the auction to the effectors. This 
classifier is termed: victorious classifier.

5) Record which classifier is the victorious classifier for this iteration, for later 
use by the apportionment o f  credit sub-system.
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V. Collect taxes Iterations: all (Chapter 3, Section 3.1.2.3)
VI. Effector Interface Iterations: all (Chapter 4, Section 4.4)

Create m odification vector m agnitude by using the action o f the victorious
classifier and mapping it onto the range defined by the move limits.
Modify all control points which matched the victorious classifier.

VII. Termination criteria Iterations: all (Chapter 4, Section 4.1)
1) IF all control point stresses are within £ of the optimum

THEN terminate this design’s optimization.
Return to Initialization, Termination & Genetic Algorithm  
M odule step I I  to commence optimization o f another design.

2) IF iteration i is greater than a user supplied maximum (if any)
THEN terminate this design’s optimization.

Return to Initialization, Termination & Genetic Algorithm  
M odule step I I  to commence optimization o f another design.

3) IF none o f the above termination criteria are satisfied
THEN continue.

VIII. Set the active design to the design created in step VI 
Set / = i+1
Set learning iteration, n, equal to n + I 
IF epoch completed (i.e. n mod Epoch length = 0)
THEN Return to Initialization, Termination & Genetic Algorithm  

M odules step IV.
ELSE return to step I.
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Algorithm B.2: SPHINcsX Algorithm in Application Mode

Initialization &  Termination Modules

I. Initialization o f Classifier System (Chapter 5, Section 5.2)
• Set Learned population
• Set Auction parameters

II. Initialization of a design to be optimized (Chapter 5, Section 5.3)
• Initial Design model
• Boundary representation definition
• Global element length
• Upper & Lower limits on dimensions (if any)
• Maximum allowable von Mises Stress
• Set optimization problem iteration, i, equal to 0

III. Increment (Chapter 6 )
• Set optimization problem iteration, i, equal to i + 1

IV. Continue to Optimization Loop

Optimization Loop

I. Analysis Module: Iterations all (Chapter 2, Section 2.4.2)
Analyze the structure and determine the von Mises stress values at the control 
points, straddle points and interior points on the modifiable boundaries of the 
component. Also determine the mass.

II. A. Detector Interface Iteration:! (Chapter 4, Section 4.3)
Read: Mass o f component

Maximum allowable von Mises stress 
Limits on dimensions 
Global element length 

B. Detector Interface Iterations: all
Read: von Mises stress at control points

von Mises stress at straddle points 
von Mises stress at interior points 

Convert stresses to their binary representation 
Create environmental messages

III. Auction module Iterations: all (Chapter 3, Section 3.1.2.1)
1) Check each classifier, determining if it matches any environmental messages. 

As the classifier may match more than one, each match is recorded.
2) IF no classifiers matched in 1)
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THEN apply the triggered cover detector operator (Chapter 3, Section 3.1.3) 
Generate a classifier which matches one of the environmental 
messages. Set the generated classifier as the victorious classifier.
Skip to step IH.4 

ELSE continue
3) Have all the classifiers that matched in 1) compete in an auction to determine 

which one shall be permitted to execute its action.
4) Pass the action of the victorious classifier to the effector interface.

IV. Effector Interface Iterations: all (Chapter 4, Section 4.4)
Create m odification vector m agnitude by using the action o f the victorious
classifier and mapping it onto the range defined by the move limits.
Modify all control points which matched the victorious classifier.

V. Termination criteria Iterations: all (Chapter 4, Section 4.1)
1) IF 

THEN
2) IF 

THEN
3) IF 

THEN
VI. Set the 

Set i =
Return

all control point stresses are within £ of the optimum
terminate this design’s optimization, 

iteration i is greater than a user supplied maximum (if any) 
terminate this design’s optimization, 

none o f the above termination criteria are satisfied 
continue.
active design to the design created in step IV 
i+7
to step I.
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Appendix C 

Learned Population
# i# o# # i oo m#oo# #o
# 1 0 0 1 # 1 # 0 # # # 1 # # # # 1
0 # # 0 0 1 1 # 1 0 # # # # 1 0#1
# # # 0 1 # 1 # 1 0 # # # # 1 0 # 1
1 # 1 1 # 0 0 0 # # 1 0 1 0 # # # #
#####1######1#10#1
###0##11##1#11####
0 # # # 0 0 0 1 # 0 1 # 1 1 # # 0 #
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Appendix D

Glossary

AI
Abbreviation for ‘Artificial Intelligence’.

Agent
Any entity, biological, mechanical or otherwise, that can perform actions, intelligent or not. 

A ntecedent
The IF portion o f an IF-THEN rule. The antecedent (condition) must be satisfied for the consequent 
(conclusion) to be true.

Application mode perform ance
Measures the performance of the learned classifier system (now essentially an expert system) in 
handling problems from the same domain (but different problems) from which it was taught.

A pportionm ent o f  cred it sub-system
The apportionment o f credit sub-system deals with the modifications in strength o f classifiers as the 
classifier system learns.

A rtificial intelligence
The field devoted to developing hardware and software that enable a computer to exhibit 
‘intelligence’ as defined and recognized by a consensus of human beings.

ASCII
American Standard Code for Information Interchange. The predominant character set encoding of 
present-day computers. The modern version uses 7 bits for each character, whereas most earlier 
codes (including an early version of ASCII) used fewer. This change allowed the inclusion of 
lowercase letters but not accented letters or any other letter forms not used in English.

Bayesian belief netw ork
An AI technique which provide for reasoning with uncertainty.

B.C.E.
Abbreviation for ‘Before the Common Era’.

Bit
Abbreviation for ‘Binary digIT’.

Byte
A unit of memory or data equal to the amount used to represent one character: on modern 
architectures this is usually 8 bits.

CAE
Abbreviation for ‘Computer Aided Engineering'.

Calculus-based optim ization
An optimization method which depends on (first and/or second) derivatives, and usually continuity 
and unimodality, (of the objective function).
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Consequent
The THEN portion of an IF-THEN rule. The consequent is the conclusion that is true if the 
antecedent is true.

Constraints
Limitations on the range over which the objective function may be minimized, represented as 
equality or inequality relations.

Credit assignment
The problem of deciding, when many parts of a system are active over a period of time (or even at 
every time step), which of those parts active at some step t contribute to achieving some desired 
outcome at step t+n, for n > 0.

CS
Abbreviation for ‘Classifier System’.

Classifier system
la . A machine learning system that learns syntactically simple string rules, called classifiers, to guide 
its performance in an arbitrary environment.
lb . Highly parallel, rule-based learning systems designed to continuously build and improve models 
of their environment based on experience.

Classifier system proper
The classifier system not including the input, output and feedback interfaces.

Conflict resolution
A strategy for determining which rule is activated or ‘fired’ when the conditions o f several rules are 
satisfied.

Crossover
The exchange of material between two paired classifiers.

Consequent
The THEN portion of an IF-THEN rule.

CSP
Abbreviation for ‘Classifier System Proper’.

Default hierarchies
A default hierarchy is a multi-level structure in which classifiers become more general as the top 
level is ascended. Each general rule responds to a broad set of environmental messages, so that just 
a few rules can cover all possible states o f the environment. Since a general rule may respond in the 
same way to many inputs that do not really belong in the same category, it will often err. To correct 
the mistakes made by the general classifiers, lower level, exception rules evolve in the default 
hierarchy. The lower level classifiers are more specific than the higher level rules: each exception 
rule responds to a subset of the situations covered by the more general rule, but it also makes fewer 
mistakes than the default rules made on those states.

Defining length (of schema)
The distance between the outermost defined positions in a schema.

Design
The specification of an artifact that both achieves desired performances and is realizable with high 
degrees of confidence. (Eastman (1981]).
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Design space
The design variables with the associated boundary representation that define the modifiable 
boundaries over which optimization may be performed.

Design variables
The entities which may be modified during the optimization process. If the values of the design 
variables are known the design is fully defined.

Domain knowledge
A narrow portion o f knowledge that deals with the specific topic of interest.

Entropy
The randomness, or disorder in a system.

Enumerative optimization
A method whereby all possible designs are tested (i.e. enumerated), for continuous problems the 
technique would discretize the problem and then enumerate.

Environment
The objects and circumstances which define the universe of interactions that the classifier system (or 
agent) can sense and effect.

Epoch
Number of iterations between the application of the genetic algorithm.
An epoch, (a block of learning cycles) is performed so that the present population of classifiers can 
be ranked. After an epoch has completed the classifiers are bred via a genetic algorithm to 
(hopefully) discover a better set o f classifiers. After the GA is applied the new population starts 
another epoch o f learning cycles. The entire process is repeated until the population performs to 
some standard.

Equivalent analyses
This can be extended to comparisons of sensitivity and non-sensitivity based optimization, for 
example if the determination of the sensitivity information adds an extra 40% to the resources 
expended in the analysis module than one simply multiplies the iterations required by the sensitivity 
based optimization system by 1.4 to get the equivalent number of iterations in the non-sensitivity 
based system.

Expert
A person who is widely recognized as having valuable knowledge in a particular area, and who has 
demonstrated ability to deal with a particular task or problem much more efficiently than most 
people.

Expert system
Computer software that can solve a narrowly defined set o f problems using information and 
reasoning techniques normally associated with a human expert. A computer system that performs at 
or near the level of a human expert in a particular field o f endeavor.

Explanation facility
A utility that gives the user access to the reasoning behind a given conclusion.

Feasible design
A design where none of the constraints are violated.

Feedback mechanism
Provides the system with information about how well it is performing in the task domain.
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Fitness proportionate reproduction
A simple rule whereby the probability o f reproduction during a given generation is proportional to 
the fitness of the individual.

Fuzzy logic
The process o f reaching conclusions based on information and facts that are not 100 percent certain.

GA
Abbreviation for ‘Genetic Algorithm’.

Genetic algorithm
la .  A search algorithm based on the mechanics of natural selection and natural genetics. 
lb .  An iterative procedure maintaining a population of structures that are candidate solutions to 
specific domain challenges. During each generation the structures in the current population are rated 
for their effectiveness as solutions, and on the basis of these evaluations, a new population of 
candidate structures is formed using specific ‘genetic operators’ such as reproduction, crossover, and 
mutation.

Generation
Same as Epoch.

Generational replacement genetic algorithm
Generational replacement genetic algorithm replaces the entire population with each generation.

Global Optimum
The best value of the objective function possible which satisfies all constraints.

GRGA
Abbreviation for ‘Generational Replacement Genetic Algorithm’.

Heuristic
A guideline or rule of thumb that is normally effective in dealing with a given situation.

Hypothetical reasoning
An AI inferencing strategy used to balance countervailing factors in order to determine the best 
solution in complex cases.

IMGA
Abbreviation for ‘Island Model Genetic Algorithm’.

Induction
Inference of a rule from particular experiences.

Infeasible design
A design where one or more o f the constraints are violated.

Inference engine
Algorithm used to determine valid conclusions within the knowledge base, given certain information. 

Input interface
Provides the classifier system with information about the environment, by adding detector messages 
to the message list. Each detector message is a binary string of length L.

Island model genetic algorithm
A genetic algorithm where multiple independent sub-populations each run mostly as islands or 
independent from the other sub-populations, with occasional migration o f fit members between the 
sub-populations. The migrations promote the sharing of fit schemata, increasing global fitness and 
maintaining diversity.
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Island model o f population genetics
Model where separate and isolated sub-populations evolve virtually independently with small 
amounts o f interactions between the sub-populations.

Knowledge
The facts and relationships that a computer program must have in order to perform in an intelligent 
manner.

Knowledge base
The set of rules contained in an expert system which constitutes the expert system’s knowledge. 

Knowledge engineering
The process of extracting an expert’s knowledge on a particular subject and representing it in a form 
that is easily accessible to a non-expert.

Learning mode performance
Measures how well the classifier system is learning to perform the correct behavior in an 
environment.

LCS
Abbreviation for ‘Learning Classifier System’.

Local Optima
Feasible locations in the design space where small changes to any of the design variables will result 
in a worse value for the objective function or an infeasible design.

Mating
The pairing of individuals for reproduction. Assortative mating is a type of mating which is not 
random but involves individuals o f specific characteristics, in contrast to panmictic mating where 
pairing is random.

Meta rules
Rules which contain information to help the inference engine make the best use of other rules. Meta 
rules control the usage of certain groups of rules in certain situations.

Model-based reasoning
A type of expert system which contains a model simulating the structure and function of the domain 
of interest.

Mutation
1. A random alteration of a position in a classifier.
2. The process in which a gene undergoes a permanent, heritable, structural change.

Natural Selection
The selection of members o f a population to reproduce, the selection is biased by the ability o f the 
member to perform well in the member’s environment.

Optimization
The act or process of making something as fully functional or effective as possible.

Order (of schema)
The order is the number of defined positions (with l ’s and 0’s).

Output interface
Provides the method for the classifier system to effect the environment.
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Panmixia
Indiscriminate, unrestricted mating. Random mating within a breeding population. Mating without 
the influence of natural selection.

Production rules
IF-THEN rules in a specific format.

Production system
A rule-based system containing IF-THEN statements as its database. In addition, the system contains 
some inference mechanism that chooses a sequence of rules to be enacted in order to reach some 
objective.

Prominent straddle point
The straddle point whose stress value differs greatest from the maximum allowable von Mises 
objective.

Random mating
Mating without regard to the genetic constitution of the mate.

Random optimization
Methods which take samples of the search space in a pseudo-random manner, usually employing 
some heuristic sampling techniques to improve efficiency.

Replacement and crowding
Handles the introduction o f new individuals into a population and the elimination of individuals from 
a population.

Reproduction
The process of producing offspring by sexual or asexual means.

Rule
A method o f  knowledge representation characterized by an IF-THEN format. The conclusions are 
considered true if the conditions are true. They may contain Boolean logic. A statement consisting 
of two parts, antecedent and consequent. The antecedent consists o f one or more IF clauses, and 
establishes conditions that must be met if the consequent part of the rule is to be activated. The 
consequent is composed of the actions of conclusions that result.

Scalable (Scalability)

The ability o f a solution to some problem to work when the difficulty o f the problem increases. For 
this research the scalability is related to the mechanical engineering problem o f component 
optimization, the methodology is scalable for it can be adapted from two-dimensional sizing designs 
to three-dimensional shape designs with no change in the methodology.

Schema (pi. schemata)
Sub-string similarity templates, i.e. a template describing a sub-string which has the same value at the 
same locations.

Selection
The process of selecting the classifiers of the population which will reproduce.

Sensitivities
The derivatives of the objective function and constraints with respect to the design variables.

Sensitivity analysis
The process o f calculating the sensitivities.
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Sim ilarity count
A count of the positions where both the child and candidate are identical. 

Simple fact
A fact that can only have two values; true or false, on or off, one or zero.

SSGA
Abbreviation for ‘Steady State Genetic Algorithm’.

Steady state genetic algorithm
Replaces only a small portion of the population on each generation.

Stochastic
Including probability or chance.

SUS
Abbreviation for ‘Stochastic Universal Selection'.

Tabula Rasa
Erased tablet (Latin).

T riggered cover de tec tor opera to r
A rule generation operator that is only activated when certain conditions occur.

Unimodal
Possessing a single maximum or minimum (in an interval).

Z cro th -o rder
An (optimization) method which does not use derivatives (gradient information).
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